5.1

CHAPTER

CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them, it is kernel-level threads—not processes—that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

In a single-processor system, only one process can run at a time; any others
must wait until the CPU is free and can be rescheduled. The objective of
multiprogramming is to have some process running at all times, to maximize
CrU utilization. The idea is relatively simple. A process is executed until
it must wait, typically for the completion of some [/0 request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Several processes are kept in memory at one time. When
one process has to wait, the operating system takes the CPU away from that
process and gives the CPU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduiing of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

5.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
Process execution consists of a cycle of CPU execution and 1/0 wait. Processes

149

150

Chapter 5 RERENE

L]

load store
add store CPU burst
read from ile

wait for VO 10 burst

store increment

index CPU burst
write to file

wait for /O /O burst
load store
add store CPU burst

read from file

1/0 burst

Figure 5.1 Alternating sequence of CPU and I/C bursts.

alternate between these two states. Process execution begins with a CPU burst.
That is followed by an /0 burst, which is followed by another CPU burst, then
another 1/0 burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 5.1).

The durations of CPU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CPU bursts and a small number of long CPU bursts.
An 1/0-bound program typically has many short CPU bursts. A CPU-bound
program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CPU to that process.

51 . Cereops 151

160

140 fr

120

100 E

frequency

40 ¥

20

16
burst duration (milliseconds)

Figure 5.2 Histogram of CPU-burst durations.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priotity queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lmed up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

When a process switches from the running state to the waiting state (for
example, as the result of an I/0 request or an invocation of wait for the
termination of one of the child processes)

When a process switches from the running state to the ready state (for
example, when an interrupt occurs)

When a process switches from the waiting state to the ready state (for
example, at completion of 1/0)

When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exists in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

152

Chapter 5

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU unti! it releases the CP’U either
by terminating or by switching to the waiting state. This scheduling method
was used by Microsoft Windows 3.x; Windows 95 introduced preemptive
scheduling, and all subsequent versions of Windows operating systems have
used preemptive scheduling. The Mac OS X operating system for the Macintosh
uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such sitiations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system cali, the kernel may be busy with an activity on
behalf of a process. Such activities may involve changing important kernel
data (for instance, [/0 queues). What happens if the process is preempted in
the middle of these changes and the kernel (or the device driver) needs to
read or medify the same structure? Chaos ensues. Certain operating systems,
including most versions of UNIX, deal with this problem by waiting either
for a system call to complete or for an 1/0 block to take place before doing a
context switch. This scheme ensures that the kernel structure is simple, since
the kernel will not preempt a process while the kernel data structures are in
an inconsistent state. Unfortunately, this kernel-execution model is a poor one
for supporting real-time computing and multiprocessing. These problems, and
their solutions, are described in Sections 5.4 and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
necds to accept interrupts at almost all times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
at exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.

5.1.4 Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcher is the module that gives control of ihe CPU to the process selected
by the short-term scheduler. This function involves the follewing:

Switching context

Switching to user mode

52

5.2 ' ' 153
* Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

Different CPU scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

CPU utilization. We want to keep the CPU as busy as possible. Concep-
tuaily, CPU utilization can range from 0 to 100 percent. In a real system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

Throughput. If the CP'U is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be 10 processes per second.

Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the perinds spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

Waiting time. The CPU scheduling algorithm does not affect the amount
of time during which a process executes or does 1/0; it affects only the
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

Itis desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable

154

5.3

Chapter5 o

to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we will illustrate their operation. An accurate illustration should involve many
processes, each being a sequence of several hundred CPU bursts and 1/0 bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. OQur measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

Dohechalimg Slosmeitey

CPU scheduling deals with the problem of deciding which of the processes
in the ready queue is to be allocated the CPU. There are many different CPU
scheduling algorithms. In this section, we describe severai of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CPU burst given in milliseconds:

Process Burst Time

P 24
P, 3
Py 3

If the processes arrive in the order Py, Py, Py, and are served in FCFS order,
we get the result shown in the following Gantt chart:

P4 Py | Pa

5.3) R 155

The waiting time is 0 milliseconds for process Py, 24 milliseconds for process
P5, and 27 milliseconds for process P;. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P, Py, Py,
however, the results will be as shown in the following Gantt chart:

Py Py Py

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the process’s CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many 1/0-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their I/0 and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
1/0 devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an 1/0 device: All the 1/0-bound processes, which have short
CPU bursts, execute quickly and move back to the 1/0 queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the 1/0 processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has been
allocated to a process, that process keeps the CPU until it releases the CPU, either
by terminating or by requesting 1/0. The FCFS algorithm is thus particularly
troublesome for time-sharing systems, where it is important that each user get
a share of the CPU at regular intervals. It would be disastrous to allow one
process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst. When the CPU is available, it is assigned to the process
that has the smallest next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

156

Chapter 5

Process Burst Time

P 6
P 8
P 7
Py 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

Py Py Pq Py

0 3 9 16 24

The waiting time is 3 milliseconds for process P, 16 milliseconds for process
Pz, 9 milliseconds for process P, and 0 milliseconds for process Py. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 miltliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes, Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower valuc may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) $JF scheduling is used
frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. There is no way to know the length of the next
CPU burst. One approach is to try to approximate S)F scheduling. We may not
know the length of the next CPU burst, but we may be able to predict its value.
We expect that the next CPU burst will be similar in length to the previous ones.
Thus, by computing an approximation of the length of the next CPU burst, we
can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CPU bursts. Let ¢, be the length of the nth CPU
burst, and let 7,1 be our predicted value for the next CPU burst. Then, for a, 0
< o < 1, define

Tog1 =0 by + (1 — a)ry.

This formula defines an exponential average. The value of t, contains our
most recent information; 7, stores the past history. The parameter o controls
the relative weight of recent and past history in our prediction. If a = 0, then
T.41 = Tp, and recent history has no effect (current conditions are assumed
to be transient); if o = 1, then T, = I, and only the most recent CPU burst

53 RN RTR T 31 ST S 157

Tifaa b

[N R)

CPU burst (f) &8 4 6 4 13 13 13

"guess” (t) 10 8 6 6 5 9 11 12 -

Figure 5.3 Prediction of the length of the next CPU burst.

matters (history is assumed to be old and irrelevant). More commonly, a =
1/2, so recent history and past history are equally weighted. The initial 7y can
be defined as a constant or as an overall system average. Figure 5.3 shows an
exponential average with « = 1/2 and 7 = 10.

To understand the behavior of the exponential average, we can expand the
formula for 7,, by substituting for 7,,, to find

Tl = aby + (1 — o)ty +---+{1— a)jat,,_, N T

Since both « and (1 — @) are less than or equal to 1, each successive term has
less weight than its predecessor. '

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when a new process arrives at the ready queve white a previous process t<
still executing. The next CPU burst of the newly arrived process may be shorte:
than what is left of the currently executing process. A preemptive SjF algorithm
will preempt the currently executing process, whereas a nonpreemptive Sjt’
algorithm will allow the currently running process to finish its CPU burst.
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length o.
the CP'U burst given in milliseconds:)

Process = Arrival Time Burst Time

P, 0 g UT)
Py 1 4
Ps 2 G
P, 3 5

\

158

Chapter 5 v -

If the processes atrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

Py P Py : P T

Y 1 5 10 17 26

Process P is started at time 0, since it is the only process in the queue. Process
P, arrives at time 1. The remaining time for process P; (7 milliseconds} is
larger than the time required by process P, (4 milliseconds), so process P is
preempted, and process P; is scheduled. The average waiting time for this
example is ((10 - 1) + (1 — 1) + (17 — 2) + (5 — 3))/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive S|F scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CPUis aliocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or () to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time 0, in the order P, P, - -+, Ps, with the length of the CPU burst
given in milliseconds:

Process BurstTime Priority

P 10 3
P 1 1
Py 2 4
P, 1 5 !
Ps 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart: ’

P, | Py . P, | v ip,

0 1 6 1t 18 19

5.3 coviiuenen Mgovitiing 159

The average waiting time is 8.2 milljseconds.

Priorities can be defined either internally or externally. Internally defined
priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average 1/0 burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nenpreemptive. When a
process arrives at the ready queue, its priority is compared with the pricrity
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 AM. Sunday, when the system is finally
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-pricrity processes. (Rumor has it that, when they shut down
the IBM 7094 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solation to the problem of indefinite blockage of low-priority processes
is aging. Aging is a technique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to 0 (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is sitnilar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum or time
slice, is defined. A time quantum is generally from 10 to (00 milliseconds. The
ready queue is treated as a circular queue. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time interval of up to 1
time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue: The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

160

Chapter5 ‘riocon e i

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
‘operafing system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst
given in milliseconds:

Process Burst Time

P, 24
P, 3
Py "3

If we use a time quantum of 4 milliseconds, then process P, gets the first
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P, Since process P> does not need 4 milliseconds, it quits before its
time quantum expires. The CPU is then given to the next process, process Ps.
Once each process has received 1 time quantum, the CPU is returned to process
P, for an additional time quantum. The resulting RR schedule is

P, | P Py Py Py pr | P By

] 4 7 10 14 18 22 26 30

The average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more
than 1 time quantum in a row (unless it is the only runnable process). If a
process’s CPU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is g,
then each process gets 1/n of the CPU time in chunks of at most 4 time units.
Each process must wait no longer than (n — 1) x g time units until its
next time quantum. For example, with five processes and a time quantum of 20
milliseconds, each process will get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantumn. At one extreme, if the time quantum is extremely large, the RR
policy is the same as the HCFS policy. If the time quantum is extremely small
(say, 1 millisecond), the RR approach is called processor sharing and (in theory)
creates the appearance that each of n processes has its own processor running
at 1/n the speed of the real processor. This approach was used in Control
Data Corporation (CDC) hardware to implement ten peripheral processors with
only one set of hardware and ten sets of registers. The hardware executes one
instruction for one set of registers, then goes on to the next. This cycle continues,

53 - ’i':iid:"x}, ekt 161

/ process time = 10 quantum context
switches
12 0
o 10
6 1
0
b 1 9
6 1 2 3

Figure 5.4 The way in which a smaller time quantum increases context switches.

resulting in ten slow processors rather than one fast one. {Actually, since
the processor was much faster than memory and each instruction referenced
memory, the processors were not much slower than ten real processors would
have been.)

In software, we need also to consider the effect of context switching on the
performance of PR scheduling. Let us assume that we have only one process of
10 time units. If the quantum is 12 time units, the process finishes in less than ?
time quantum, with no overhead. If the quantum is 6 time units, however, the
process requires 2 quanta, resulting in a context switch. If the time quantum is
1 time unit, then nine context switches will occur, slowing the execution of the
process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

Turnaround time also depends on the size of the time quantum. As we can
see from Figure 5.5, the average turnaround time of a set of procésses does
not necessarily improve as the time-quantum size increases. In general, the
average turnaround time can be improved if most processes fimish their next
CPU burst in a single time quantum. For example, given three processes of 10
time units each and a quanturmn of 1 time unit, the average turnaround time is
29. if the time quantum is 10, however, the average turnaround time drops to
20. If context-switch time is added in, the average turnaround time increases
for a smaller time quantum, since more context switches gre required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degenerates to FCFS policy. A rule of thumb is'that 80 percent of the
CPU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Anether class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups.-For example, a

162 Chapter 5

average turnaround time

1t 2 3 4 5 & 7
time quantum

Figure 5.5 The way in which turnaround time varies with the time quantum.

common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory
size, process priority, or process type. Each queue has its own scheduling
algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let’s look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

1. System processes
Interactive processes

3. Interactive editing processes
4. Batch processes

% Student processes

5.3 Cenbifns 163

highest priority
::3’{_. *_ interactive ediing processes —
— pe— o
] e p— SN

lowast priority

Figure 5.6 Muitilevel queue scheduling.

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process wvas
running, the batch process would be preempted. ‘

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground—-background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CPU to give to its processes on an FCFS bass.

5.3.6 Multilevel Feedback-Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback-queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/0-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback-queue scheduler with three

queues, numbered from 0 to 2 (Figure 5.7). The scheduler first executes alt

i64

Chapter 5

__>| quantum = 8

el

—»| quantum = 16

=

—-| FCFS

Figure 5.7 Multilevel feedback queues.

processes in queue (. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
s given a time quantum of 8 milliseconds. H it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next 1/0 burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

In general, a muitilevel feedback-queue scheduler is defined by the
foliowing parameters:

= The number of queues
The scheduling algorithm for each queue

* The method used to determine when to upgrade a process to a hlgher—
priority queue

kS

The method used to determine when to demote a process to a lower-
priority queue

» The method used to determine which queue a process will enter when that
process needs service

The definition of a muiltileve] feedback-queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific

5.4

5.4 Ui P e WoRSdGIS 165

system under design. Unfortunately, it is also the most complex algorithr,
since defining the best scheduler requires some means by which to select
values for all the parameters.

[P AR IE TR RS SR SO IE T Tt s TESE I R T

Our discussion thus far has focused on the problems of scheduling the CPU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingty
more complex. Many possibilities have been tried; and as we saw with single-
processor CPU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems
in which the processors are identical —homogeneous—in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an 1/0
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.}

5.4.1 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a multiprocessor system has all scheduling
decisions, 1/0 processing, and other system activities handled by a single
processor—the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach ifses symmetric multiprocessing (SMP), where each
processor is self-scheduling. All processes may be inta common ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 6,
if we have multiple processors trying to access and update a common data
structure, the scheduler must be programimed carefully: We must ensure that
two processors do not choose the same process and that processes are not lost
from the queue. Virtually all modern operating systems support SMP, including
Windows XP, Windows 2000, Solaris, Linux, and Mac OS X.

In the remainder of this section, we will discuss issues concerning SMP
systems.

5.4.2 Processor Affinity

Consider what happens to cache memory when a process has been running on
a specific processor: The data most recently accessed by the process populates
the cache for the processor; and as a result, successive memory accesses by
the process are often satisfied in cache memory. Now consider what happens
if the process migrates to another processor: The contents of cache memory
must be invalidated for the processor being migrated from, and the cache for
the processor being migrated to must be re-populated. Because of the high
cost of invalidating and re-populating caches, most SMP systems try to avoid
migration of processes from one processor to another and instead attempt to

166

Chapter 5 "o v v Bedhuiding

keep a process running on the same processor. This is known as processor
affinity, meaning that a process has an affinity for the processor on which it is
currently running.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor—but
not guaranteeing that it will do so— we have a situation known as soft affinity.
Here, it is possible for a process to migrate between processors. Some systems
—such as Linux—also provide system calls that support hard affinity, thereby
allowing a process to specify that it is not to migrate to other processors.

5.4.3 Load Balancing

On SMP systems, it is important to keep the workload balanced among all
processors to fully utilize the benefits of having more than one processor.
Otherwise, one or more processors may sit idle while other processors have
high workloads along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in
an SMP system. It is important to note that load balancing is typically only
necessary on systems where each processor has its own private queue of eligible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnable process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—if it finds an imbalance—evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 5.6.3) and the ULE scheduler
available for FreeBSD systems implement both techniques. Linux runs its load-
balancing algorithm every 200 milliseconds (push migration) or whenever the
run queue for a processor is empty (pull migration).

Interestingly, load balancing often counteracts the benefits of processor

affinity, discussed in Section 5.4.2. That is, the benefit of keeping a process

running on the same processor is that the process can take advantage of its
data being in that processor’s cache memory. By either pulling or pushing a
process from one processor to another, we invalidate this benefit. As is often the
case in systems engineering, there is no absolute rule concerning what policy
is best. Thus, in some systems, an idle processor always pulls a process from
a non-idle processor; and in other systems, processes are moved only if the
imbalance exceeds a certain threshold.

54.4 Symmétric Multithreading

SMP systems allow several threads to run concurrently by providing multiple
physical processors. An alternative strategy is to provide multiple logical—
rather than physical—processors. Such a strategy is known as symmetric

55 Vihooad arheduainng 167

ST DN s

system bus

Figure 5.8 A typical SMT architecture

multithreading (or SMT); it has also been termed hyperthreading technology
on Intel processors. .

The idea behind SMT is to create muitiple logical processors on the same
physical processor, presenting a view of several logical processors to the operat-
ing system, even on a system with only a single physical processor. Each logical
processor has its own architecture state, which includes general-purpose and
machine-state registers. Furthermore, each logical processor is responsible for
its own interrupt handling, meaning that interrupts are delivered to—and
handled by—logical processors rather than physical ones. Otherwise, each
logical processor shares the resources of its physical processor, such as cache
memory and buses. Figure 5.8 illustrates a typical SMT architecture with two
physical processors, each housing two logical processors. From the cperating
system’s perspective, four processors are available for work on this system.

It is important to recognize that SMT is a feature provided in hardware, not
software. That is, hardware must provide the representation of the architecture
state for each logical processor, as well as interrupt handling. Operating
systems need not necessarily be designed differently if they are to run on an
SMT system; however, certain performance gains are possible if the operating
system is aware that it is running on such a system. For example, consider a
system with two physical processors, both of which are idle. The scheduler
should first try scheduling separate threads on each physicat processor rather
than on separate logical processors on the same physical processor, Otherwise,
both logical processors on one physical processor could be busy while the other
physical processor remained idle.

soadivgiiey

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

168

- Chapter 5

5.5.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads belonging
to the same process. When we say the thread library schedules user threads onto
available LWPs, we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CPU, the
kernel uses system-contention scope (5CS). Competition for the CPU with 5CS
scheduling takes place among all threads in the system. Systems using the
one-to-one model (such as Windows XP, Solaris 9, and Linux) schedule threads
using only SCS.

Typically, PCS is done according to priority—the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities
are set by the programmer and are not adjusted by the thread library, although
some thread libraries may allow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in faver of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.4) among threads of equal priority.

5.5.2 Pthread Scheduling

We provided a sample POSIX Pthread program in Section 4.3:1, afong with an
introduction to thread creation with Pthreads. Now, we highlight the POSIX
Pthread APT that allows specifying either PCS or SCS during thread creation.
Pthreads identifies the following contention scope values:

« PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling.
@ PTHREAD .SCOPE_SYSTEM schedules threads using SCS scheduling.

On systems implementing the many-to-many modet (Section 4.2.3), the
PTHREAD.SCOPE_PROCESS policy schedules user-level threads onto available
LwPs. The number of LWPs is maintained by the thread library, perhaps using
scheduler activations (Section 4.4.6). The PTHREAD SCOPE SYSTEM scheduling
policy will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy (Section
4.2.2).

The Pthread IPC provides the following two functions for getting—and
setting —the contention scope policy:

s pthread attr setscope(pthread attr t *attr, int scope)
+ pthread_attr_getscope(pthread attr_t *attr, int *scope)
The first parameter for both functions contains a pointer to the attribute set for

the thread. The second parameter for the pthread_attr_setscope () function
is passed either the PTHREAD.SCOPESYSTEM or PTHREAD_SCOPE_PROCESS

5.5 lereod soheduiiag 169

#include <pthread.h>
#include <stdioc-h>
#define NUM_THREADS 5

int main (int. argc, char *argv[])
int i, scope;
pthread_t tid [NUM_THREADS] ;
pthread_attr_t attr;

/* get the default attributes */
pthread.attr_init (&attr);

/* first inguire on the current scope */
if (pthread.attr getscope(&attr, &scope) tx 0)
fprintf (stderr, "Unable to get scheduling scope\n");

elses {
if (scope == PTHREAD SCOPE_PROCESS)
printf ("PTHREAD SCOPE.PROCESS™) ;
else if (scope == PTHREAD_SCOPE_SYSTEM)
printf ("PTHREAD SCOPE_SYSTEM") ;
else

fprintf (stderr, "Illegal scope value.\n");

}

/* set the spcheduling algorithm te PCS or SCS */
pthread attr setscope{&attr, PTHREAD SCOPE_SYSTEM) ;

&

/% create the threads */
for (i = 0; 1 < NUM.THREADS; i++)
pthread create (&tid[i] , &attr, runner, NULL} ;

/* wow join on each thread */
for (i = 0; i1 < NUM_THREADS; i++}
pthread_join(tid{i], NULL;};

.

/* Each thread will begin control in this function */
veid *runner{void *param)

{

/* do some work ... */

pthread exit (0);

Figure 5.9 Pthread scheduling API.

170

5.6

Chapters [T N O SUUNRTEEE

value, indicating how the contention scope is to be set. In the case of
pthread. attr_getscope(), this second parameter contains a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns non-zero values.

In Figure 5.9, we illustrate a Pthread program that first determines the
existing contention scope and sets it to PTHREAD SCOPE_PROCESS. It then creates
five separate threads that will run using the SCS scheduling policy. Note that on
some systems, only certain contention scope values are allowed. For example,
Linux and Mac 05 X systems allow only PTHREAD_SCOPE_SYSTEM.

e ey v rton Boeannanias

We turn next to a description of the scheduling policies of the Solaris, Windows
XP, and Linux operating systems. It is important to remember that we are
describing the scheduling of kernel threads with Solaris and Linux. Recall that
Linux does not distinguish between processes and threads; thus, we use the
term iask when discussing the Linux scheduler.

class-
giobal scheduling specific scheduler run
priority order priorities classes queue
highest first real time kemel
e . threads of
real-time
LWPs
*)
system kernel
Q __e Service
threads
* I
interactive & kernet
time sharing @ oo threads of
interactive &
time-sharing
LWPs
dr-

lowest last

Figure 5.10 Solaris schedufing.

B Lrperifing sv-inod Vaawnpd o 171

o

5.6.1 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling. It has defined four classes of
scheduling, which are, in order of priority:

Real time
2. System
Time shaﬁng

+ Interactive

Within each class there are different priorities and different scheduling algo-
rithms. Solaris scheduling is illustrated in Figure 5.10.

The default scheduling class for a process is time sharing. The scheduling
policy for time sharing dynamically alters priorities and assigns time slices
of different lengths using a miultilevel feedback queue. By default, therc is
an inverse relationship between priorities and time slices: The higher the
priority, the smaller the time slice; and the lower the priority, the larger the
time slice. Interactive processes typically have a higher priority; CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications a higher priority for better performance.

Figure 5.11 shows the dispatch table for scheduling interactive and time-
sharing threads. These two scheduling classes include 60 priority levels, but

0

0
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 a0 30 55
45 40 35 56
50 40 40 58
55 40 . 45 58
59 20 49 ~ 59

Figure 5.11 Solaris dispatch table for interactive and time-sharing threads.

172 Chapter5 . .

for brevity, we display only a handful, The dispatch table shown in Figure 5.11
contains the following fields:

= Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

Time quantum. The time quantum for the associated priority. This
illustrates the inverse relationship between priorities and time guanta:
The lowest priority (priority 0) has the highest time quantum (200
milliseconds), and the highest priority (priority 59) has the lowest time
quantum (20 milliseconds).

Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered
CPU-intensive. As shown in the table, these threads have their priorities
lowered.

« Return from sleep. The priority of a thread that is returning from sleeping
" (such as waiting for 1/0). As the table illustrates, when 1/0 is available
for a waiting thread, ils priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

. Solaris 9 introduced two new scheduling classes: fixed priority and fair
shave. Threads in the fixed-priority class have the same priority range as
those in the time-sharing class; however, their priorities are not dynamically
adjusted. The fair-share scheduling class uses CPU shares instead of priorities
to make scheduling decisions. CPU shares indicate entitlement to available CPU
resources and are allocated to a set of processes (known as a project).

Solaris uses the system class to run kernel processes, such as the scheduler
and paging daemon. Once established, the priority of a system process does
not change. The system class is reserved for kernel use (user processes running
in kernel mode are mot in the systems class).

Threads in the real-time class are given the highest priority. This assignment
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CPU
until it (1) blocks, (2) uses its time slice, or {3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. As mentioned, Solaris has traditionally used the many-
to-many medel (4.2.3) but with Solaris 9 switched to the one-to-one model
(4.2.2).

5.6.2 Exampie: Windows. XP Scheduling

Windows XP schedules threads using a priority-based, preemptive scheduling
algorithm. The Windows XP scheduler ensures that the highest-priority thread
will always run. The portion of the Windows XP kernel that handles scheduling

5.6 173

is called the dispatcher. A thread selected to run by the dispatcher will run untif
it is preempted by a higher-priority thread, until it terminates, until its time
quantum ends, or until it calls a blocking system call, such as for 1/0. If a
hig,her—priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variable class
contains threads having priorities from 1 to 15, and the real-time class contains
threads with priorities ranging from 16 to 31. {There is also a thread running at
priority 0 that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it fmdq a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows X"
kernel and the Win32 APl The Win32 API identifies several prioritv classes to
which a process can belong. These include:

REALTIME .PRIORITY .CLASS
HIGH_PRIORITY_CLASS
ABCOVE_NORMAL_PR [OR\ITY,CLASS
NORMAL_PRIORITY CLASS

BELOW _NORMAL_PRIORITY _CLASS
IDLE_PRIORITY CLASS

Priorities in all classes except the REALTIME PRIORITY.CLASS are variable,
meaning that the prioritv of a thread belonging to one of these classes can
change.

Within each of the priority classes is a relative priority. The values for
relative priority include:

TIME CRITICAL

HIGHEST

ABOVE NORMAL

NORMAL

BELOW _NORMAL

LOWEST

IDLE
The priority of each thread is based on the priority class it belongs to and its
relative priority within that class. This relationship is shown in Figure 5.12. The

values of the priority classes appear in the top row. The left column contains the
values for the relative priorities. For example, if the relative priority-of a thread

174 Chapter 5

tme - high - nommai | "ormal | EOTL | arorty
time-critical 3 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
-formal 24 13 10 8 [4
tielow normat 23 12 7 5 3
fowest " 22 11 6 4 2
idle - 16 1 1 1 1 1

Figure 5.12 Windows XP pricrities.

in the ABOVE NORMAL PRIORITY CLASS is NORMAL, the numeric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that specific class. The base
priorities for each priority class are:

REALTIME PRIORITY CLASS—24
HIGH_PRIORITY CLASS—13
ABOVE_NORMAL PRIORITY CLASS—10
NORMAL_PRIORITY CLASS—8

BELOW _NORMAL_PRIORITY CLASS—6
IDLE PRIORITY CLASS—4

Processes are typically members of the NORMAL PRIORITY.CLASS. A pro-
cess will belong to this class unless the parent of the process was of the
[DLE_PRIORITY.CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread’s time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority
is never lowered below the base priority, however. Lowering the thread’s
priority tends to limit the CPU consumption of compute-bound threads. When a
variable-priority thread is released from a wait operation, the dispatcher boosts
the priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard 1/0 would get a large
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tends to give good response times to interactive threads that
are using the mouse and windows. It also enables 1/0-bound threads to keep
the 1/0 devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the

5.6 175

user is currently interacting receives a priority boost to enhance its FeSPONSY
time. .

When a user is running an interactive program, the system nceds to provide
especially good performance for that process. For this reason, Windows xP
has a special scheduling rule for processes in the NORMAL PRIORITY .CLASS.
Windows XP distinguishes between the foregrotnid process that is currently
selected on the screen and the background processes that are not currently
selected. When a process moves into the foreground, Windows Xp increases the
scheduling quantum by some factor—ty pically by 3. This increase gives the
foreground process three times longer to run before a time-sharing preemption
oceurs.

5.6.3 Example: Linux Scheduling

Prior to version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time—known as O(1)—regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separale priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, including Solaris (5.6.1) and
Windows XP (5.6.2), Linux assigns higher-priority tasks longer time quanta and
lower-priority tasks shorter time quanta. The relationship between priorities
and time-slice length is shown in Figure 5.13.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time slice. When a task has exhausted its time
slice, it is considered expired and is not eligible for execution again until all
other tasks have also exhausted their time quanta. The kernel maintains a list

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
* tasks
L]
99
100
. other
. tasks
140 lowest 10ms

Figure 5.13 The relationship between priorities and time-slice length.

176

5.7

Chapter 5

active expired
array array
prionty fask hists priority task lists
[0] o—0 [0] C—0—0
1 Oo—0—0 [1} G
[140] Q [140] c—0

Figure 5.14 List of tasks indexed according to priority.

of all runnable tasks in a runqueue data structure. Because of its support for
SMP, each processor maintains its own runqueue and schedules itself indepen-
dently. Each runqueue contains two priority atrays—active and expired. The
active array contains all tasks with time remaining in their time slices, and the
expired array contains atl expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.14). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks have
exhausted their time slices (that is, the active array is empty), the two priority
arrays are exchanged; the expired array becomes the active array, and vice
versa.

Linux implements real-time scheduling as defined by POSIX.1b, which is
fully described in Section 5.5.2. Real-time tasks are assigned static priorities.
All other tasks have dynamic priorities that are based on their rice values plus
or minus the value 5. The interactivity of a task determines whether the value
5 will be added to or subtracted from the nice value. A task’s interactivity
is determined by how long it has been sleeping while waiting for 1/0. Tasks
that are more interactive typically have longer sieep times and therefore are
more likely to have adjustments closer to -5, as the scheduler favors interactive
tasks. The result of such adjustments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

The recalculation of a task’s dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasks in the new active array have been
assigned new priorities and corresponding time slices.

How do we select a CPU scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or throughput. To select an algorithm, we must first define

5.7 177

the relative importance of these measures. Our criteria may include several
measuies, such as:

Maximizing CPU utilization under the constraint that the maximum
response time is 1 second

Maximizing throughput such that turnaround time is (on average) lineariy
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

One type of analytic evaluation is deterministic modeling. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0, in the order given, with the
length of the CPU burst given in milliseconds:

Process Burst Time

& 10
P 29
Py 3
Py 7
Py 12

Consider the FCFS, SJF, and RR {quantum = 10 milliseconds) scheduling
algorithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

P Pz P3 P4 P5

[S2 N
i

0 10 39 4z 43

The waiting time is 0 milliseconds for process Pp, 10 milliseconds for process
Ps, 39 milliseconds for process P, 42 milliseconds for process Py, and 49
milliseconds for process Ps. Thus, the average waiting time is {0 + 10 + 39
+ 42 + 49)/5 = 28 milliseconds. -

178

Chapter 5

With nonpreemptive SJF scheduling, we execute the processes as

Py Py By Py Py

The waiting time is 10 milliseconds for process Py, 32 milliseconds for process
P3, 0 milliseconds for process P3, 3 milliseconds for process P, and 20
milliseconds for process Ps. Thus, the average waiting time is (10 + 32 + 0
+ 3+ 20)/5 = 13 milliseconds.

With the RR algorithm, we execute the processes as

Py Ps P3 Py Pg Py Pg Py

0 10 20 23 30 40 50 52 61

The waiting time is 0 milliseconds for process Py, 32 milliseconds for process
P>, 20 milliseconds for process P3, 23 mil'iseconds for process Py, and 40
milliseconds for process Ps. Thus, the average waiting time is (0 + 32 + 20
+ 23 + 40)/5 = 23 milliseconds.

We see that, in this case, the average waiting time obtained with the SIF
policy is less than half that obtained with FCFS scheduling; the RR algorithm
gives us an intermediate value.

Deterministic modeling is simple and fast. It gives us exact numbers,
allowing us to compare the algorithms. However, it requires exact numbers for
input, and its answers apply only to those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples. In
cases where we are running the same program over and over again and can
measure the program’s processing requirements exactly, we may be able to use
deterministic modeling to select a scheduling algorithm. Furthermore, over a
set of exarnples, deterministic modeting may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at time 0), the
SJF policy will always result in the minimum waiting time.

5.7.2 Queueing Models

On many systems, the processes that are run vary from day to day, so there
is no static set of processes (or times) to use for deterministic modeling. What
can be determined, however, is the distribution of CPU and 170 bursts. These
distributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CPU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). From these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

5.7 : 179

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CPU is a server with its ready queue, as is
the 1/0 system with its device queues. Knowing arrival rates and service rates,
we can compute utilization, average queue length, average wait time, and so
on. This area of study is called queueing-network analysis.

As an example, let # be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let X be
the average arrival rate for new processes in the queue (such as three processes
per second). We expect that during the time W that a process waits, A x W
new processes will arrive in the queue. If the system is in a steady state, then
the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

n=kxW.

This equation, known as Little’s formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution.

We can use Little’s formula to compute one of the three vartables, if we
know the other two. For example, if we know that 7 processes arrive every
second (on average), and that there are normafly 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of
complicated algorithms and distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in mathematically tractable
—but unrealistic—ways. It is also generally necessary to make a number of
independent assumptions, which may not be accurate. As a result of these
difficulties, queueing models are often only approximations of real systems,
and the accuracy of the computed results may be questionable.

5.7.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use
simulations, Running simulations involves programming a model of the
computer system. Software data structures represent the major components
of the system. The simulator has a variable representing a clock; as this-
variable’s value is increased, the simulator modifies the system state to reflect
the activities of the devices, the processes, and the scheduler. As the simulation
executes, statistics that indicate algorithm performance are gathered and
printed.

The data to drive the simulation can be generated in several ways. The most
. common method uses a random-number generator, which is programmed to
generate processes, CPU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
{uniform, exponential, Poisson) or empirically. If a distribution is to be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of events in the real system; this distribution can
then be used to drive the simulation.

180

Chapter 5

—

) . pertormance
simuation > statistics

T for FCFS
FCFS B
(1Y) | ==

CPU 10 "
1 213 i
actual CPy 12 performance
procass =G 112 b e —> stafistics

execution CPU 2 for SJF
10 1487
CPU 173
LA R]
trace tape N\\
‘:.\\?_\ performance
B simulation > slatisiics
J’__ tor RR (g = 14)

L RR{g - 141

Figure 5,15 Evaluation of CPU schedulers by simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only how many instances of each event occur; it does not
indicate anything about the order of their vccurrence, To correct this problem,
we can use trace tapes. We create a trace tape by monitoring the real system and
recording the sequence of actual events (Figure 5.15). We then use this sequence
to drive the simulation. Trace tapes provide an excellent way to compare two
algorithms o exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring hours of computer time A
more detailed simulation provides more accurate results, but it also requires
more computer time. In addition, trace tapes can reguire large amourts of
storage space. Finally, the design, coding, and debugging of the simulator can
be a major task.

5.7.4 Implementation

Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and sec how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.

The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifyving the operating system
to support it (along with its required data structures) but also in the reaction
of the users to a constantly changing operating system. Most users are not
interested in building a better operating system; they merely want to get their
processes exccuted and use their results. A constantly changing operating
system does not help the users to get their work done.

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are swritten and the tvpes of problems change, but also as a vesult

5.8

5.8 181

of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes, If interactive
processes are given priority over noninteractive processes, then users may
switch to interactive use.

For example, researchers designed one system that classified interactive
and noninteractive processes automatically by looking at the amourt of
terminal 1/0. If a process did not input or output to the terminal in a T-second
interval, the process was classified as noninteractive and was moved to a
lower-pricrity queue. in response to this policy, one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
fess than 1 second. The systemn gave his programs a high priotity, even though
the terminal output was cornpletely meaningless.

The most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for
a specific application or set of applications. For instance, a workstation
that performs high-end graphical applications may have scheduling needs
different from those of a web server or file server. Some operating systems—
particularly several versions of UNIX—allow the system manager to fine-tune
the scheduling parameters for a particular system configuration. For example,
Solaris provides the dispadmin command to allow the system administrator
to modify the parameters of the scheduling classes described in Section 5.6.1.

Another approach is to use APIs that modify the priority of a process or
thread. The Java, /POSIX, and /WinAPI/ provide such functions. The downfall
of this approach is that performance tuning a system or application most often
Jdoes not result in improved performance in more general situations.

CrU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

First-come, first-served (FCFS) scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes. Shortest-
job-first (SIF) scheduling is provably optimal, providing the shortest average
waiting time. Implementing SJF scheduling is difficult, however, because pre-
dicting the length of the next CPU burst is difficult. The SJF algorithm is a special
case of the general priority scheduling algorithm, which simply allocates the
CPU to the highest-priority process. Both priority and SJF scheduling may suffer
from starvation. Aging is a technique to prevent starvation.

Round-robin (RR) scheduling is more appropriate for a time-shared (inter-
active) system. RR scheduling allocates the CPU to the first process in the ready
queue for g time units, where g is the time quantum. After g time units, if
the process has not relinquished the CPU, it is preempted, and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. [f the quantum is too large, RR scheduling degenerates to FCTS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive, The
<JF and prierity algorithms may be either preemptive or nonpreemptive.

182

Chapter5 ¢

Mutltilevel queue algorithms allow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
uses FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

Many contemporary computer systems support multiple processors and
allow each processor to schedule itself independently. Typically, each processor
maintains its own private queue of processes {or threads), all of which are
available to run. Issues related to multiprocessor scheduling include processor
affinity and load balancing.

Operating systems supporting threads at the kernel level must schedule
threads—not processes—for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive,
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm, Simulation methods determine
performance by imitating the scheduling algorithm on a “representative”
sample of processes and computing the resulting performance. However, sim-
ulation can at best provide an approximation of actual system performance;
the only reliable technique for evaluating a scheduling algorithm is to imple-
ment the algorithm on an actual system and monitor its performance in a
“real-world” environment.

5.1 Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utlization and response time
b. Average turnaround time and maximum waiting time

¢. 1/O device utilization and CIPU utilization

5.2 Consider the following set of processes, with the length of the CPU burst
given in milliseconds:

Process BurstTime Priority

P 10

3

P 1 1
Py 2 3
Py 1 4
5 5 2

53

5.4

5.5

5.6

5.7

5.8

183

The processes are assumed to have arrived in the order Py, Po, 5, Py, Bs,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these
processes using the following scheduling algorithms: FCES, SJF,
nonpreemptive priority (a smaller priority number implies a
higher priority), and RR (quantum = 1).

b. What is the tumaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting time of each process for each of the scheduling
algorithms in part a?

d. Which of the algorithms in part a results in the minimum average
waiting time (over all processes)?

Why is it important for the scheduler to distinguish 1/0-bound programs
from CPU-bound programs?

Which of the following scheduling algorithms could result in starvation?
a. First-come, first-served
b. Shortestjob first
¢. Round robin
d. Priority

Consider a system running ten I/0-bound tasks and one CPU-bound
task. Assume that the 1/0-bound tasks issue an 1/0 operation once for
every millisecond of CPU computing and that each 1/0 operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond
b. The time quantum is 10 milliseconds

Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU
time allocated to the user’s process?

Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a. FCF5
b. RR
c. Multilevel feedback queues

Using the Windows XP scheduling algorithm, what is the numeric
priority of a thread for the following scenarios?

a. A thread in the REALTIME_PRIORITY_CLASS with a relative priority
of HIGHEST ’

184

Chapter 5

b. A thread in the NORMAL_PRIORITY_CLASS with a relative priority
of NORMAL

¢. A thread in the HIGH_PRIORITY.CLASS with a relative priority of
ABOVE NORMAL

5.9 The traditional tINIX scheduler enforces an inverse relationship between
priority numbers and priorities: The higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = {recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CP'U usage for process P is 40, process Ps is 18,
and process 5 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?

Feedback queues were originally implemented on the CTSS system described
in Corbato et al. [1962]. This feedback queue scheduling system was analyzed
by Schrage [1967].

Anderson et al. {1989], Lewis and Berg [1998], and Philbin et al. [1996]
talked about thread scheduling. Multiprocessor scheduling was discussed
by Tucker and Gupta [1989], Zahorjan and McCann [1990], Feitelson and
Rudolph {1990}, Leutenegger and Vernon [1990], Blumofe and Leiserson [1994],
Polvchronopoutos and Kuck [1987], and Lucco [1992]. Scheduling techniques
that take into account information regarding process execution times from
previous runs were described in Fisher [1981], Hall et al. [1996], and Lowney
etal [1993].

Scheduling in real-time systems was discussed by Liu and Layland [1973],
Abbot [1984], Jensen et al. [1985], Hong et al. [1989], and Khanrna et al. [1992].
A special issue of Operating System Review on real-time operating systems was
edited by Zhao [1989].

Fair-share schedulers were covered by Henry [1984], Woodside [1986], and
Kay and Lauder [1983].

Scheduling policies used in the UNIX V operating system were described by
Bach [1987]; those for UNEX BSD 4.4 were presented by McKusick et al. [1996];
and those for the Mach operating svstem were discussed by Black [1990].
Bovet and Cesati [2002] covered scheduling in Linux. Solaris scheduling was
described by Mauro and McDougall [2001]. Solomon [1998] and Solomon and
Russinovich [2000] discussed scheduling in Windows NT and Windows 2000,
respectively. Butenhof [1997] and Lewis and Berg [1998] described scheduling
in Pthreadssystems,

Part Three

A cooperating process is one that can affect or be affected by cther
processes executing in the system. Cooperating processes can either
directly share a logical address space (that is. both code and dataj or be
allowed to share data only through files or messages. The former case is
achieved through the use of tightweight processes or threads.

Concurrent access to shared data may result in data inconsistency.
There are varicus mechanisms to ensure the orderly execution of coop-
erating processes that share a logical address space. so that data
consistency is maintained.

Some of these mechanisms may result in a situation where processes
are waiting indefinitely in a waiting state. This situation is called a deadliock.
There are a nurmber of different methods that an operating system can
use to prevent or deal with deadlocks.

6.1

CHAPTER

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data} or be allowed to share data
only through files or messages. The former case is achieved through the use of
lightweight processes or threads, which we discussed in Chapter 4. Concurrent
access to shared data may result in data inconsistency. In this chapter, we
discuss various mechanisms to ensure the orderly execution of cooperating
processes that share a logical address space, so that data consistency is
maintained.

In Chapter 3, we developed a model of a system consisting of cooperating
sequential processes or threads, all running asynchronously and possibly
sharing data. We illustrated this model with the producer-consumer problem,
which is representative of operating systems. Specifically, in Section 3.4.1, we
described how a bounded buffer could be used to enable processes to share
memory.

Let us return to our consideration of the bounded buffer. As we pointed
out, our solution allows at most BUFFER_SIZE — 1 items in the buffer at the same
time. Suppose we want to modify the algorithm to remedy this deficiency. One
possibility is to add an integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and is decremented
every time we remove one item from the buffer. The code for the producer
process can be modified as shown in Figure 6.1. The code for the consumer
process can be modified as shown in Figure 6.2.

Although both the producer and consumer routines are correct separately,
they may not function correctly when executed concurrently. As an illustration,
suppose that the value of the variable counter is currently 5 and that the
producer and consumer processes execute the statements “counter++” and
“counter--" concurrently. Following the execution of these two statements,
the value of the variable counter may be 4, 5, or 6! The only correct result,

187

188

Chapter 6

while {(true)
{
/* produce an item in nextProduced */
while (counter == BUFFER SIZE}
; /* do nothing */
buffer [in] = nextProduced;
in = {(in + 1} % BUFFER.SIZE;
counter++;

Figure 6.1 The code for the producer process.

though, is counter == 5, which is generated correctly if the producer and
consumer execute scparateiy.

We can show that the value of counter may be incorrect as follows. Note
that the statement “counter++" may be implemented in machine language {on
& typical machine} as

register) = counter
register) = registery + 1
counter =register

where registery is a local CPU register. Similarly, the statement “counter—--"1s
implemented as follows:

registery = counter
registers = register; — 1
counter = registera

where again register; is a local CPU register. Even though register and
register; may be the same physical register (an accumulator, say), remember
that the contents of this register will be saved and restored by the interrupt
handler (Section 1.2.3).

The concurrent execittion of “counter++" and “counter--" is equivalent
to a sequential execution where the lower-level statements presented pre-

while (true)

{

while {(counter == 0)

; /* do nothing */

nextConsumed = buffer [out];

out = (out + 1) % BUFFER.SIZE;

counter--;

/* consume the item in nextConsumed */
1
+

Figure 6.2 The code for the consumer process.

6.2 . .. - Sl et b 189

viously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

To: producer execute register) = counter {register) = 5|

Ti: producer execute registery = register; + 1 {register) = 6}

Ty consumer execute register, = counter {register; = 5)

T3: consumer execute registery = register; —1 {registery; = 4)

T, producer execute counter — registery fcounter = 6}

Ts: consumer execute counter = register; [counter = 4}
Notice that we have arrived at the incorrect state “counter == 4", indicating

that four buffers are full, when, in fact, five buffers are full. If we reversed the
order of the statements at Ty and Ts, we would arrive at the incorrect state
“counter == 6".

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called altace condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable counter. To make such a guarantee, we require that the processes
be synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Clearly, we
want the resulting changes not to interfere with one another. Because of the
importance of this issue, a major portion of this chapter is concerned with
process synchronization and coordination.

vy s [. T H
6-2 03 LR R o0

Consider a systern consisting of n processes {Py, P, ..., P,1}. Each process
has a segment of code, called a critical section, in which the process may
be changing common variables, updating a table, writ'1g a file, and so on.
The important feature of the system is that, when one process is executing in
its critical section, no other process is to be allowed to execute in its critical
section. That is, no two processes are executing in their critical sections at the
same time. The critical-section problem is to design a protocol that the processes
can use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the entry section. The
critical section may be followed by an exit section. The remaining code is the
remainder section. The general structure of a typical process I is shown in
Figure 6.3. The entry section and exit section are enclosed in boxes to highlight
these important segments of code.

A solution to the critical-section problem must satisfy the following three
requirements:

Mutual exclusion. If process P, is executing in its critical section, then no
other processes can be executing in their critical sections.

190 Chapter 6

do {

entfry section

critical section

exit seckion

remainder section
} while (TRUE);

Figure 6.3 General structure of a typical process R.

2 Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in the
decision on which will enter its critical section next, and this selection
cannot be postponed indefinitely.

Bounded waiting. There exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has madz a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative speed of the n processes.

At a given point in time, many kernel-mode processes may be active in the
operating system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modified when anew file is opened or closed (adding
the file to the list or removing it from the list). If two processes were to open files
simultaneously, the separate updates to this list could result in a race condition.
Other kernel data structures that are prone to possible race conditions include
structures for maintaining memory atlocation, for maintaining process lists,
and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

Two general approaches are used to handle critical sections in operating
systems: (1) preemptive kernels and (2) nonpreemptive kernels. A preemptive
Kernel allows a process to be preempted while it is running in kernel mode.
A nonpreemptive kernel does not allow a process running in kernel mode
to be preempted; a kernel-mode process will run until it exits kernel mode,
blocks, or voluntarily yields control of the CPU. Obviously, a nonpreemptive
kernel is essentially free from race conditions on kernel data structures, as
only one process is active in the kernel at a time. We cannot say the same
about nonpreemptive kernels, so they must be carefully designed to ensure
that shared kernel data are free from race conditions. Preemptive kemels are
especially difficult to design for SMP architectures, since in these environments

6.3 Frivrsoin's Sodution 191

it is possible for two kernel-mode processes to run simultaneously on different
PTOCessors.

Why, then, would anyone favor a preemptive kernel over a nonpreemptive
one? A preemptive kernel is more suitable for real-time programming, as it will
allow a real-time process to preempt a process currently running in the kernel.
Furthermore, a preemptive kernel may be more responsive, since there is less
risk that a kermnel-mode process will run for an arbitrarily long period before
relinquishing the processor to waiting processes. Of course, this effect can be
minimized by designing kernel code that does not behave in this way.

Windows XxP and Windows 2000 are nonpreemptive kernels, as is the
traditional UNIX kernel. Prior to Linux 2.6, the Linux kernel was nonpreemptive
as well. However, with the release of the 2.6 kernel, Linux changed to the
preemptive model. Several commercial versions of UNIX are preemptive,
including Solaris and IRIX.

6.30 7 o s Solubion

Next, we illustrate a classic software-based solution to the critical-section
problem known as Peterson’s solution. Because of the way modem computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson’s solution will work correctly
on such architectures. However, we present the solution because it provides
a good algorithmic description of solving the critical-section problem and
illustrates some of the complexities involved in designing software that
addresses the requirements of mutual exclusion, progress, and bounded
waiting requirements.

Peterson’s solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered Py and P;. For convenience, when presenting P;, we use P; to
denote the other process; that is, j equals 1 — i.

Peterson’s solution requires two data items to be shared between the two
processes:

int turn;
boclean flagl2}l;

The variable turn indicates whose turn it is to enter its critical section. That is,
if turn == i, then process P; is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section.
For example, if £lag[i] is true, this value indicates that P; is ready to enter
its critical section. With an explanation of these data structures complete, we
are now ready to describe the algorithm shown in Figure 6.4.

To enter the critical section, process P; first sets f1lag{i] to be true and
then sets turn to the value j, thereby asserting that if the other process wishes
to enter the critical section, it can do so. If both processes try to enter at the
same time, turn will be set to both i and j at roughly the same time. Only
one of these assignments will last; the other will occur but will be overwritten

192

Chapter 6 Svnobiinizal oo

do {

flag[i] = TRUE;
turn = j;
while (flagl[j] && turn == j);

critical section

| flagli] = FALSE;

remainder section
} while (TRUE];
Figure 6.4 The structure of process £ in Peterson’s solution.

immediately. The eventual value of turn decides which of the two processes
is allowed to enter its critical section first,
We now prove that this solution is correct. We need to show that: Rob

1. ‘Mutuai exclusion is preserved.
* The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only
if either flag{j] == false or turn == i. Also note that, if both processes
can be executing in their critical sections at the same time, then flag[0] ==
flag[1] == true. These two observations imply that Py and P, could not have
successfully executed their while statements at about the same time, since the
value of turn can be either § or 1 but cannot be both. Hence, one of the processes
—say P;—must have successfully executed the while statement, whereas P,
had to execute at least one additional statement (“turn == j”). However, since,

at that time, flag[j] == true, and turn == j, and this condition will persist
as long as P; is in its critical section, the result follows: Mutual exclusion is
preserved.

To prove properties 2 and 3, we note that a process P; can be prevented from
entering the critical section only if it is stuck in the while loop with the condition
flaglil == true and turn == j; this loop is the only one possible. If P; is not
veady to enter the critical section, then flag[j] == false, and P; can enter its
critical section. If P; has set flag(j] to true and is also executing in its while
statement, then either turn == i or turn == j. If turn == i, then P, will enter
the critical section. If turn == j, then P; will enter the critical section. However,
once P; exits its critical section, it will reset flag[j] to false, allowing P; to
enter its critical section. If P; resets flag{j] to true, it must also set turn to i.
Thus, since P; does not change the value of the variable turn while executing
the while statement, P; will enter the critical section {progress) after at most
one entry by P; (bounded waiting).

6.4

6.4 o oo ilardware 1193

do {

acquire lock

critical section

remainder section
} while (TRUE);

Figure 6.5 Solution to the critical-section problem using locks.

oy . oy L - oy 11 & g
rrr e L on Harchyarre

We have just described one software-based solution to the critical-section
problem. In general, we can state that any solution to the critical-section
problem requires a simple tool—X& lock. Ragee conditions are prevented by
requiring that critical regions be protected by locks. That is, a process must
acquire a lock before entering a critical section; it releases the lock when it exits
the critical section. This is illustrated in Figure 6.5. :

In the following discussions, we explore several more solutions to the
critical-section problem using techniques ranging from hardware to software-
based APIs available to application programmers. All these solutions are based
on the premise of locking; howevet, as we shall see, the design of such locks
can be quite sophisticated. ’

Hardware features can make any programming task easier and improve
system efficiency. In this section, we present some simple hardware instructions
that are available on many systems and show how they can be used effectively
in solving the critical-section problem.

The critical-section problem could be solved simply in a uniprocessor envi-
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this manner, we could be sure that the current sequence
of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable. This is the approach taken by nonpreemptive
kernels. ’

Unfortunately, this solution is not as feasible in a multiprocessor environ-
ment. Disabling interrupts on a multiprocessor can be time consumin g, as the

boolean TestAndSet {boclean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}

Figure 6.6 The definition of the TestAndSet () instruction.

194

Chapter & syrchronicaiion.

do {
while (TestAndSetLock (&lock))
; // do nothing

// critical section
lock = FALSE;

// remainder section
}while (TRUE) ;

Figure 6.7 Mutual-exclusion implementation with TestAndSet ().

message is passed to all the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also, consider the effect
on a system’s clock, if the clock is kept updated by interrupts.

Many modern computer systems therefore provide special hardware
instructions that allow us either to test and modify the contenit of a word or
to swap the contents of two words atomically-—that is, as one uninterruptible
unit. We can use these special instructions to solve the critical-section problem
in a relatively simple manner. Rather than discussing one specific instruction
for one specific machine, we abstract the main concepts behind these types of
instructions. .

The TestAndSet() instruction can be defined as shown in Figure 6.6.
The important characteristic is that this instruction is executed atomically.
Thus, if two TestAndSet () instructions are executed simuttaneously (each on
a different CPU), they will be executed sequentially in some arbitrary order. If
the machine supports the TestAndSet () instruction, then we can implement
muttual exclusion by declaring a Boolean variable lock, initialized to false.
The structure of process F; is shown in Figure 6.7.

The Swap() instruction, in contrast to the TestAndSet () instruction,
operates on the contents of two words; it is defined as shown in Figure 6.8.
Like the TestAndSet () instruction, it is executed atomically. If the machine
supports the Swap(} instruction, then mutual exclusion can be provided as
follows. A global Boolean variable lock is declared and is initialized to false.
In addition, each process has a local Boolean variable key. The structure of
process P, is shown in Figure 6.9.

Although these algorithms satisfy the mutual-exclusion requirement, they
do not satisfy the bounded-waiting requirement. In Figure 6.10, we present

void Swap (boclean *a, boolean *b! {
boclean temp = *a;

*a = *b;

*h = temp;

}

Figure 6.8 The definition of the Swap () instruction.

6.4 - oot [Y P 195

do {
key = TRUE;
while (key == TRUE)
Swap (&lock, &key);

// critical section
lock = FALSE;

// remainder section
Jwhile {TRUE);

Figure 6.9 Mutual-exclusion implementation with the Swap () instruction.

another algorithm using the TestAndSet() inslruction that satisfies all the
critical-section requirements. The common data structures are

boolean waiting(n];
boolean lock;

These data structures are initialized to false. To prove that the mutual-
exclusion requirement is met, we note that process P; can enter its critical
section only if either waitingfi]l == false or key == false. The value
of key can become false only if the TestAndSet () is executed. The first
process to execute the TestAndSet () will find key == false; all others must

do {
waiting[i] = TRUE;
key = TRUE;
while (waitingl[i] && key)
key = TestAndSet (&lock) ;
waiting[i] = FALSE;

// critical section

3= (1 + 1) % n;
while ((j != i) && !waiting{i]}
j S (j + 1) % I;

if {3 == 1)
lock = FALSE;
else
waiting[j] = FALSE;

// remainder sectiocn
}while (TRUE);

Figure 6.10 Bounded-waiting mutual exclusion with TestAndSet (}.

196

Chaptere -~

wait. The variable vaiting[i] can become false only if another process
leaves its critical section; only one waiting[i] issetto false, maintaining the
mutual-exclusion requirement.

To prove that the progress requirement is met, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the
critical section either sets lock to false or sets waiting[j] to false. Both
allow a process that is waiting to enter its critical section to proceed.

To prove that the bounded-waiting requirement is met, we note that, when
a process leaves its critical section, it scans the array waiting in the cyclic
ordering (i +1,i+2, .., n—1,0,...,i — 1). It designates the first process in this
ordering that is in the entry section (waiting[j] == true) as the next one to
enter the critical section. Any process waiting to enter its critical section will
thus do so within n - 1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd-
Set () instructions on multiprocessors is not a trivial task. Such implementa-
tions are discussed in books on computer architecture.

6.5() :

The various hardware-based solutions to the critical-section problem {using
the TestAndSet() and Swap() instructions) presented in Section 6.4 are
complicated for application programmers to use. To overcome this difficulty,
We Can use a sy/nsp_rg:g_i\zi:tiwl called a semaphore. o

A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait () and signal().
The wait () operation was originally termed P (from the Dutch proberen, “to
test”); signal () was originally called V (from verhogen, “to increment”). The
definition of wait () is as follows:

wait {8) {

while 8 «=10
i // no-op

8--;

1

The definition of signal () is as follows:

signal(s§) {
S++;

}

All the modifications to the integer value of the semaphore in the wait ()
and signal () operations must be executed indivisibly. That is, when one
process modifies the semaphore value, no other process can simultaneously
modify that same semaphore value. In addition, in the case of wait (8}, the
testing of the integer value of S (S < 0, and its possible modification (S--),
must also be executed without interruption. We shall see how these operations
can be implemented in Section 6.5.2; first, let us see how semaphores can be

used.

197

do {)
waiting(mutex) ;

// critical section
signal (mutex) ;

// remainder section
jwhile (TRUE);

Figure 6.11 Mutual-exclusion implementation with semaphores.

6.5.1 Usage

Operating systems often distinguish between counting and binary semaphores.
The value of a counting semaphore can range over an unrestricted domain.
The value of a binary semaphore can range only between 0 and 1. On some
systems, binary semaphores are known as mutex locks, as they are locks that
provide mutual exclusion. .

We can use binary semaphores to deal with the critical-section problem for
multiple processes. The n processes share a semaphore, mutex, initialized to 1.
Each process P; is organized as shown in Figure 6.11.

Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a wait() operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal () operation
(incrementing the count). When the count for the semaphore goes to 0, all
resources are being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

We can also use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes: P; with a statement
51 and P, with a statement $,. Suppose we require that S, be executed only
after 5; has completed. We can implement this scheme readily by letting P,
and P share a common semaphore synch, initialized to 0, and by inserting the
statements

51;
signal (synch) ;

in process Py, and the statements

wait{(synch);

z

in process P;. Because synch is initialized to 0, P, will execute S, only after Py
has invoked signal (synch), which is after statement 5; has been executed.

198

Chapter6 = .o

6.5.2 Implementation

The main disadvantage of the semaphore definition given here is thatit requires
busy waiting. While a process is in its critical section, any other process that
tries to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,
where a single CPU is shared among many processes. Busy waiting wastes
CPU cycles that some other process might be able to use productively. This
type of semaphore is also called a spinlock because the process “spins” while
waiting for the lock. (Spinlocks do have an advantage in that no context switch
is required when a process must wait on a lock, and a context switch may
take considerable time. Thus, when locks are expected to be held for short
times, spinlocks are useful; they are often employed on multiprocessor systems
where one thread can “spin” on one processor while another thread performs
its critical section on another processor.)

To overcome the need for busy waiting, we can modify the definition of
the wait () and signal{) semaphore operations. When a process executes the
wait() operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process can blotk
itself. The block operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state. Then control is transferred to the CPU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal() operation. The process is
restarted by a wakeup () operation, which changes the process from the waiting
state t0 the ready state. The process is then placed in the ready queue. (The
CPU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.}

To implement semaphores under this definition, we define a semaphore as
a “C” struct:

typedef struct {

int value;

struct process *1list;
} semaphore; '

Each semaphore has an integer value and a list of processes list. When
a process must wait on a semaphore, it is added to the list of processes. A
signal{) operation removes one process from the list of waiting processes
and awakens that process.

The wait () semaphore operation can now be defined as

wait (semaphore *8) {
S->value--;
if (S->value < 0} {
add this process to S->1ist;
block()};

6.5 Somaphores 199

The signal () semaphore operation can now be defined as

signal (semaphore *3) {
S~->valuet++;
if (8->value <= 0) {
remove a process P from 3->list;
wakeup(P) ;

}

The block(} operation suspends the process that invokes it. The wakeup(P)
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system as basic system calls.

Note that, although under the classical definition of semaphores with busy
waiting the semaphore value is never negative, this implementation may have
negative semaphore values. If the semaphore value is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
wait () operation.

The list of waiting processes can be easily implemented by a link field in
each process control block (PCB). Each semaphore contains an integer value
and a pointer to a list of PCBs. One way to add and remove processes from
the list in a way that ensures bounded waiting is to use a FIFO queue, where
the semaphore contains both head and tail pointers to the queue. In general,
however, the list can use ary queueing strategy. Correct usage of semaphores
does not depend on a particular queueing strategy for the semaphore lists.

The critical aspect of semaphores is that they be executed atomically. We
must guarantee that no two processes can execute wait() and signal()
operations on the same semaphore at the same time. This is a critical-section
problem; and in a single-processor environment (that is, where only one CPU
exists), we can solve it by simply inhibiting interrupts during the time the
wait () and signal () operations are executing. This scheme works in a single-
processor environment because, once interrupts are inhibited, instructions
from different processes cannot be interleaved. Only the currently running
process executes until interrupts are reenabled and the scheduler can regain
control.

In a multiprocessor environment, interrupts must be disabled on every
processor; otherwise, instructions from different processes (running on differ-
ent processors) may be interleaved in some arbitrary way. Disabling interrupts
on every processor can be a difficuit task and furthermore can seriously dimin-
ish performance. Therefore, SMP systems must provide alternative locking
techniques—such as spinlocks-—to ensure that wait() and signal() are
performed atomically.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the wait() and signal() operations. Rather,
we have removed busy waiting from the entry section to the critical sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of the wait () and signal () operations, and these sections are
short (if properly coded, they should be no more than about ten instructions).

200

6.6

Chapter 6 “.oihia. <o

Thus, the critical section is almost never occupied, and busy waiting occurs
rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or
even hours) or may almost always be occupied. In such cases, busy waiting is
extremely inefficient.

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a signal () operation. When such a state is reached, these
processes are said to be deadlocked.

To illustrate this, we consider a system consisting of two processes, Py and
Py, each accessing two semaphores, S and G, set to the value 1:

Py P
wait (S); wait(Q);
wait(Q); wait (S);
signa.l (8); signahl(Q) ;
signal(Q}; signal(8);

Suppose that P executes wait (8) and then P, executes wait (Q). When Py
executes wait (Q), it must wait until P| executes signal(Q}. Similarly, when
P, executes wait (8), it must wait until P; executes signal (8). Since these
signal () operations cannot be executed, F; and P; are deadlocked.

We say that a set of processes is in a deadlock state when every process in
the set is waiting for an event that can be caused only by another process in the
set. The events with which we are mainly concerned here are resource acquisition
and release. However, other types of events may result in deadlocks, as we shall
show in Chapter 7. In that chapter, we shall describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is indefinite blocking, or starva-
tion, a situation in which processes wait indefinitely within the semaphore.
Indefinite blocking may occur if we add and remove processes from the list
associated with a semaphore in LIFO (last-in, first-out) order.

Classin Protiems of Synchronization

In this section, we present a number of synchronization problems as examples
of a large class of concurrency-control problems. These problems are used for
testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization.

6.6 il e ATV I 201

do {
// produce an item in nextp

wait (empty) ;
wait (mutex) ;

// add nextp to buffer

signal (mutex) ;
signal {full);
lwhile (TRUE);

Figure 6.12 The structure of the producer process.

6.6.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly.
used to illustrate the power of synchronization primitives. We present here a
general structure of this scheme without committin g ourselves to any particular
implementation; we provide a related programming project in the exercises at
the end of the chapter.

We assume that the pool consists of n buffers. each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and full semaphores
count the number of empty and full buffers. The semaphore empty is initialized
to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 6.12; the code for
the consumer process is shown in Figure 6.13. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

do {
wait (full);
walt (mutex) ;

// remove an item from buffer to nextc

signal (mutex) ;
signal {empty) ;

// consume the item in nextc
}while (TRUE};

Figure 6,13 The structure of the consumer process,

202

Chapter 6 ~rhiss ot

6.6.2 The Readers-Writers Problem

A database is to be shared among several concurrent processes. Some of these
processes may want only to read the database, whereas others may want to
update (that is, to read and write) the database. We distinguish between these
two types of processes by referring to the former as readers and to the latter
as writers. Obviously, if two readers access the shared data simultaneously, no
adverse affects will result. However, if a writer and some other thread (either
a reader or a writer) access the database simultaneously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database. This synchronization problem is
referred to as the readers—writers problem. Since it was originally stated, it has
been used to test nearly every new synchronization primitive. The readers—
writers problem has several variations, all involving priorities. The simplest
one, referred to as the first readers—writers problem, requires that no reader
will be kept waiting unless a writer has already obtained permission to use
the shared object. In other words, no reader should wait for other readers to
finish simply because a writer is waiting. The second readers—writers problem
requires that, once a writer is ready, that writer performs its write as soon as
possible. In other words, if a writer is waiting to access the object, no new
readers may start reading.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. In this section, we present a
solution to the first readers—writers problem. Refer to the bibliographical notes
at the end of the chapter for references describing starvation-free solutions to
the second readers—writers problem.

In the solution to the first readers—writers problem, the reader processes
share the following data structures:

semaphore mutex, Wrt;
int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized
to 0. The semaphore wrt is common to both reader and writer processes.
The mutex semaphore is used to ensure mutual exclusion when the variable
readcount is updated. The readcount variable keeps track of how many
processes are currently reading the object. The semaphore wrt functions as a
mutual-exclusion semaphore for the writers. It is also used by the first or last

do {
wait (wrt);
// writing is performed

signal (wrt);
jwhile (TRUE):

Figure 6.14 The structure of a writer process.

6.6 per T onviey e o s Bronization 203

do |
walt (mutex) ;
readcount++;
if (readcount == 1)
wait (wrt) ;
signal (mutex) ;

// reading is performed

wait {mutex) ;
readcount--;
if {readcount == Q)
signal {wrt) ;
signal (mutex) ;
}while (TRUE};
pon

Figure 6.15 The structure of a reader process.

reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for a writer process is shown in Figure 6.14; the codé for a reader
process is shown in Figure 6.15. Note that, if a writer is in the critical section
and n readers are waiting, then one reader is quened on wrt, and n — 1 readers
are queued on mutex. Also observe that, when a writer executes signal(wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

The readers—writers problem and its solutions has been generalized to
provide reader—writer locks on some systems. Acquiring a reader—writer lock
requires specifying the mode of the lock: either read or write access. When a
process only wishes to read shared data, it requests the reader-writer lock
in read meode; a process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader-writer lock in read mode; only one process may acquire the lock for
writing as exclusive access is required for writers.

Reader-writer locks are most useful in the following situations:

Inapplications where it is easy to identify which processes only read shared
data and which threads only write shared data. -

Inapplications that have more readers than writers. This is because reader-
writer locks generally require more overhead to establish than semaphores
or mutual exclusion locks, and the overhead for setting up a reader—writer
tock is compensated by the increased concurrency of allowing multiple
readers.)

6.9.3 The Dining-Philosophers Problerm

Consider five philosophers who spend their lives thinking and eating, The
philosophers share a circular table surrounded by five chairs, each belonging
to one philosopher. In the center of the table is a bgwl of rice, and the table is laid

204

Chapter6 = :otironvabin

Figure 6.16 The situation of the dining philosophers.

with five single chopsticks (Figure 6.16). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at a time. Obviously, she cannot pick up a chopstick that
is already in the hand of a neighbor. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When
she is finished eating, she puts down both of her chopsticks and starts thinking
again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists dislike philosophers but because it is an example of a large class
of concurrency-control problems. It is a simple representation of the need
to allocate several resoutrces among several processes in a deadlock-free and
starvation-free manner.

One simple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing a wait () operation on that
semaphore; she releases her chopsticks by executing the signal () operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of
philosopher i is shown in Figure 6.17.

- Although this solution guarantees that no two neighbors are eating
simultaneously, it nevertheless must be rejected because it could create a
deadlock. Suppose that all five philosophers become hungry simultaneously
and each grabs her left chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher tries to grab her right chopstick, she will be
delayed forever.

Several possible remedies to the deadlock problem are listed next. In
Section 6.7, we present a splution to the dining-philosophers problem that
ensures freedom from deadlocks.

¢ Allow at most four philosophers to be sitting simultaneously at the table.

6.7

6.7 205

do |
wait (chopstick([i]);
wait (chopstick[(i+1) % 5]);

// eat
signal (chopstick [i]};
signal {chopstick [(i+1} % 5]);

// think
}while (TRUE);

Figure 6.17 The structure of philosopher ;.

Allow a philosopher to pick up her chopsticks only if both chopsticks are
available {to do this she must pick them up in a critical section).

Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick.

Finally, any satisfactory solution to the dining-philosophers problem must
guard against the possibility that one of the philosophers will starve to death.
A deadlock-free solution does not necessarily eliminate the possibility of
starvation.

Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing errors
that are difficult to detect, since these erros happen only if some particular
execution sequences take place and these sequences do not always occur.

We have seen an example of such errors in the use of counters in our
solution to the producer—consumer problem (Section 6.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be reasonable—off by only 1. Nevertheless, the solution is
obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when semaphaores are
used. To illustrate how, we review the semaphore solntion to the critical-
section problem. All processes share a semaphore variable mutex, which is
initialized to 1. Each process must execute wait (mutex) befare entering the
critical section and signal (mutex) afterward. If this sequernice is not observed,
two processes may be in their critical sections simultaneously. Let us examine
the various difficulties that may result. Note that these difficulties will arise
even if a single process is not well behaved. This situation may be caused by an
honest programming error or an uncooperative programmer.

20¢

Chapter 6

Suppose that a process interchanges the order in which the wait () and
signal () operations on the semaphore mutex are executed, resulting in
the following execution:

signal (mutex);
critical section
wait(mutex);

[n this situation, several processes may be executing in their critical sections
simultancously, violating the mutual-exclusion requirement. This error
may be discovered only if several processes are simultaneously active
in their critical sections. Note that this situation may not always be
reproducible.

Suppose that a process replaces signal (mutex) with wait (mutex). That
is, it executes

wait (mutex);
critical section
wait(mutex);

In this case, a deadlock will occur.

Suppose that a process omits the wait{mutex)}, or the signal (mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
occur.

These examples illustrate that various types of errors can be generated easily
when programmers use semaphores incorrectly to solve the critical-section
problem. Similar problems may arise in the other synchronization models that
we discussed in Section 6.6.

To deal with such errors, researchers have developed high-level language
constructs. In this section, we describe one fundamental high-level synchro-
nization construct—the monitor type. '

6.7.1 Usage

A type, or abstract data type, encapsulates private data with public methods
to operate on that data. A monitor type presents a set of programmer-defined
operations that are provided mutual exclusion within the monitor. The monitor
type also contains the declaration of variables whose values define the state
of an instance of that type, along with the bodies of procedures or functions
that operate on those variables. The syntax of a monitor is shown in Figure
6.18. The representation of a monitor type cannot be used directly by the
various processes. Thus, a procedure defined within a monitor can access only
those variables declared locally within the monitor and its formal parameters.
Similarly, the local variables of a monitor can be accessed by only the local
procedures.

6.7 207

- monitor monitor name

{

// shared variable declarations

procedure P1 { . . .) {

}

procedure P2 (. . .) {

}

proced;.lre Pn { . . . { -
}

initialization code (. . .) {

1

!

Figure 6.18 Syntax of a mcnitor.

The monitor construct ensures that only one process at a time can be
active within the monitor. Consequently, the programmer does not need
to code this synchronization constraint explicitly (Figure 6.19). However,
the monitor construct, as defined so far, is not sufficiently powerful for
modeling some synchronization schemes. For this purpose, we need to define
additional synchronization mechanisms. These mechanisms are provided by
the condition construct. A programmer who needs to write a tailor-made
synchronization scheme can define one or more variables of type condition:

condition x, ¥;

The only operations that can be invoked on a condition variable are wait ()
and signal (). The operation

x.wait(};

means that the process invoking this operation is suspended until another
process invokes

x.signal();

The x. signal () operation resumes exactly one suspended process. If no
process is suspended, then the signal () operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure
6.20). Contrast this operation with the signal () operation associated with
semaphores, which always affects the state of the semaphore.

208

Chapter 6

entry queue ‘

/shared N

operations

initialization
code

Figure 6.19 Schematic view of a monitor.

Now suppose that, when the x. signal () operation is invoked by a process
P, there is a suspended process Q associated with condition x. Clearly, if the

suspended process (is allowed to resume its execution, the signaling process P

must wait. Otherwise, both P and § would be active simultaneously within the
monitor. Note, however, that both processes can conceptually continue with
their execution. Two possibilities exist:

Signal and wait. P either waits until () leaves the monitor or waits for
another condition.

Signal and continue. (J either waits until .” leaves the monitor or waits
for another condition.

There are reasonable arguments in favor of adopting either option. On the
one hand, since P was already executing in the monitor, the signal-and-continue
method seems more reasonable. On the other hand, if we allow thread P to
continue, then by the time Q is resumed, the logical condition for which
was waiting may no longer hold. A compromise between these two choices
was adopted in the language Concurrent Pascal. When thread P executes the
signal operation, it immediately ieaves the monitor. Hence, {J is immediately
resumed.

6.7.2 Dining-Philosophers Solution Using Monitors

We now illustrate monitor concepts by presenting a deadlock-free solution to
the dining-philosophers problem. This solution imposes the restriction that a
philosopher may pick up her chopsticks only if both of them are available. To

6.7 209

entry queue

shared data

queues associated with
x, y conditions

LE R

-

operations

intialization
code

Figure 6.20 Monitor with condition variables.

code this solution, we need to distinguish among three states in which we may
find a philosopher. For this purpose, we introduce the following data structure:

enum {thinking, hungry, eating}statel[5];

Philosopher i can set the variable state[1] = eating only if her two
neighbors are not eating: (state [{i+4) ¥ 5] '= eating)and (state[{(i+1)
% 5] '= eating).

We also need te declare

condition self[5];

where philosopher i can delay herself when she is hungry but is unable to
obtain the chopsticks she needs:

We are now in a position to describe our solution to the dining-philosophers
problem. The distribution of the chopsticks is controll-d by the monitor dp,
whose definition is shown in Figure 6.21. Each philosopher, before starting to
eat, must invoke the operation pickup (). This may rest.lt in the suspension of
the philosopher process. After the successful completiorn: of the operation, the
philosopher may eat. Following this, the philosopher it:vokes the putdown ()
operation. Thus, philosopher i must invoke the operations pickup{) and
putdown () in the following sequence:

dp.pickup(i);
cat

dp.putdown(i):

210

Chapter 6

monitor dp

{

enum {THINKING, HUNGRY, EATING}state(5];
condition gelf[5];

void pickup{int i) {
state[i] = HUNGRY;
i test (i) ;
if (statel[i] != BATING)
self[i] .wait () ;

}

void putdown (int i} {
state[i] = THINKING;
test{{i + 4) % 5);
test{{i + 1) % 5};

}
void test{int i) {
if ((statel{i + 4) % 5] != EATING) &&
{state[i] == HUNGRY) &&
(state[{i + 1) % 5] != EATING)) {

state[i} = EATING:
self [i] .signal () ;

)
}
initializationcode(} {
for (int i = 0; 1 < 5; i++}
state[i] = THINKING;
}

}

Figure 6.21 A monitor solution to the dining-philosopher problem.

It is easy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is
possible for a philosopher to starve to death. We do not present a solution to
this problem but rather leave it as an exercise for you.

6.7.3 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, a semaphore mutex (initialized to 1) is provided.
A process must execute wait (mutex) before entering the monitor and must
execute signal {mutex} after leaving the monitor.

Since a sighaling process must wait until the resumed process either Jeaves
or waits, an additional semaphore, next, 1s introduced, initialized to 0, on
which the signaling processes may suspend themseives. An integer variable

6.7 21

next.count is also provided to count the number of processes suspended on
next. Thus, each external procedure F is replaced by

wait(mutex) ;
body of F

if (next_count > Q)
signal (next};
else
signal (mutex);

Mutual exclusion within a monitor is ensured.

We can now describe how condition variables are implemented. For cach
condition x, we introduce a semaphore x_sem and an integer variable x_count,
both initialized to 0. The operation x.wait () can now be implemented as

¥_count++;
if (next_count > 0)
signal(next);
else
signal (mutex) ;
wait(x_sem);
x.count--—;

The operation x.signal () can be implemented as

if (x_count > 0} |
next_count++;
signal{x_sem};
wait (next);
next_count--;

t

This implementation is applicable to the definitions of monitors given
both Hoare and Brinch-Hansen. In some cases, however, the generality of the
implementation is unnecessary, and a significant improvement in efficiency -
possible, We leave this problem to you in Exercise 6.12.

6.7.4 Resuming Processes Within a Monitor

We tum now to the subject of process-resumption order within a moniton. it
several processes are suspended on condition x, and an x. signal (3 operation
is executed by some process, then how do we determine which of tihe
suspended processes should be resumed next? One simple solution is to use an
FCFS ordering, so that the process waiting the longest is resumed first. In manv
circumstances, however, such a simple scheduling scheme is not adequate. For
this purpose, the conditional-wait construct can be used; it has the form

x.wait(c);

212

Chapter 6

monitor RescurceBllocator
boolean busy;
condition x;

void acquire(int time) {
if (busy)
X.wait (time);
busy = TRUE;

——

void release() |
busy = FALSE;
X.signal{};

initialization.code() |
busy = FALSE;
}

Figure 6.22 A monitor to allocate a single rescurce.

where c is an integer expression that is evaluated when the wait () operation
is executed. The value of ¢, which is called a priority number, is then stored
with the name of the process that is suspended. When x . signal () is executed,
the process with the smallest associated priority number is resumed next.

To illustrate this new mechanism, we consider the ResourceAllocator
monitor shown in Figure 6.22, which controls the allocation of a single resource
arnong competing processes, Each process, when requesting an allocation
of this resource, specifies the maximum time it plans to use the resource.
The monitor allocates the resource to the process that has the shortest time-
atlocation request. A process that needs to access the resource in question must
observe the following sequence:

R.acquire(t);
access the resource;

R.release();

where R is an instance of type ResourceAllocator.

Unfortunately, the monitor concepl cannot guarantec that the preceding
access sequence will be observed. In particular, the following problems can
OCCUT:

A process might access a resource without first gaininz aceons CTIMISSION
i3] :
to the resource

Aprocees it never refease a resource onee it has beer s nted access

6.8

6.3 E . e 213

A process might attempt to release a resource that it never requested.

A process might request the same resource twice (without first releasing
the resource}.

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource-
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect all the programs that make use of the ResourceAllocator monitor
and its managed resource. We must check two conditions to establish the
correctness of this system. First, user processes must always make their calls
on the monitor in a correct sequence. Second, we must be sure that an
uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can we
guarantee that no time-dependent errors will occur and that the scheduling
algorithm will not be defeated.

Although this inspection may be possible for a small, static system, it is not
reasonable for a large system or a dynamic system. This access-control problem
can be solved only by additional mechanisms that will be described in Chapter
17.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro-
nounced C-sharp), and Java. Other languages—such as Erlang—provide some
type of concurrency support using a similar mechanism.

We next describe the synchronization mechanisms provided by the Solaris,
Windows XP, and Linux operating systems, as well as the Pthreads APL We
have chosen these three systems because they provide good examples of
different approaches for synchronizing the kernel, and we have included the
Pthreads API because it is widely used for thread creation and synchronization
by developers on UNIX and Linux systems. As you will see in this section, the
synchronization methods available in these differing systems vary in subtle
and significant ways.

6.8.1 Synchronization in Solaris

To control access to critical sections, Solarts provides adaptive mutexes, condi-
tion variables, semaphores, reader—writer locks, and turnstiles. Solaris imple-
ments semaphores and condition variables essentiallv as thev are presented

214

Chapter 6

in Sections 6.5 and 6.7. In this section, we describe adaptive mutexes, reader-
writer locks, and turnstiles.

An adaptive mutex protects access to every critical data item. On a
multiprocessor system, an adaptive mutex starts as a standard semaphore
implemented as a spinlock. If the data are locked and therefore already in use,
the adaptive mutex does one of two things. If the lock is held by a thread that
is currently running on another CPU, the thread spins while waiting for the
lock to become available, because the thread holding the lock is likely to finish
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the telease of the lock. It is put
to sleep so that it will not spin while waiting, since the lock will not be freed
very soon. A lock held by a sleeping thread is likely to be in this category. On
a single-processor system, the thread holding the lock is never running if the
lock is being tested by another thread, because only one thread can run at a
time. Therefore, on this type of system, threads always sleep rather than spin
if they encounter a lock.

Solaris uses the adaptive-mutex method to protect only data that are
accessed by short code segments. That is, a mutex is used if a lock will be
heid for less than a few hundred instructions. If the code segment is longer
than that, spin waiting will be exceedingly inefficient. For these longer code
segments, condition variables and semaphores are used. If the desired lock is
already held, the thread issues a wait and sleeps. When a thread frees the lock, it
issues a signal to the next sleeping thread in the queue. The extra cost of putting
a thread to sleep and waking it, and of the associated context switches, is less
than the cost of wasting several hundred instructions waiting in a spinlock.

Reader-writer locks are used to protect data that are accessed frequently
but are usually accessed in a read-only manner. In these circumstances,
reader—writer locks are more efficient than semaphores, because multiple
threads can read data concurrently, whereas semaphores always serialize access
to the data. Reader—writer locks are relatively expensive to implement, so again
they are used on only long sections of code.

Solaris uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or a reader—writer lock. A turnstile is a queue structure
containing threads blocked on a lock. For example, if one thread currently
owns the lock for a synchronized object, all other threads trying to acquire the
lock will block and enter the turnstile for that fock. When the lock is released,
the kernel selects a thread from the turnstile as the next owner of the Jock.
Each synchronized object with at least one thread blocked on the object’s lock
requires a separate turnstile. However, rather than associating a turnstile with
each synchronized object, Solaris gives each kernel thread its own turnstile.
Because a thread can be blocked only on one object at a time, this is more
efficient than having a turnstile per object.

The turnstile for the first thread to block on a synchronized object becomes
the turnstile for the object itself. Subsequent threads blocking on the lock will
be added to this turnstile. When the initial thread uitimately releases the lock,
it gains a new turnstile from a list of free turnstiles maintained by the kernel. To
prevent a priority inversion, turnstiles are organized according to a priority-
inheritance protocol (Section 19.5). This means that if a lower-priority thread
currently holds a lock that a higher-priority thread is blocked on, the thread
with the lower priority will temporarily inherit the priovity of the higher-

6.8 215

priority thread. Upon releasing the lock, the thread will revert to its original
priority.

Note that the locking mechanisms used by the kernel are implemented
tor user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority-
inheritance protocol. Kernel-locking routines adhere to the kernel priority-
inheritance methods used by the scheduler, as described in Section 19.5;
user-level thread-locking mecharisms do not provide this functionality.

To optimize Solaris performance, developers have refined and fine-tuned
the locking methods. Because locks are used frequently and typically are used
for crucial kernel functions, tuning their implementation and use can produce
great performance gains.

6.8.2 Synchronization in Windows XP

The Winduws XP operating system is a multithreaded kernel that provides
support for real-time applications and multiple processors. When the Windows
XP kernel accesses a global resource on a uniprocessor system, it temporarily
masks interrupts for all interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows XP protects access to global
resources using spinfocks. Just as in Solaris, the kernel uses spinlocks only to
protect short code segments. Furthermore, for reasons of efficiency, the kernel
ensures that a thread will never be preempted while holding a spinlock.

For thread synchronization outside the kernel, Windows XP provides
dispatcher objects. Using a dispatcher object, threads synchronize according
to several different mechanisms, including mutexes, semaphores, events, and
timers. The system protects shared data by requiring a thread to gain ownership
of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.5. Events are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs, Finally, timers are used to notifv one (or more than one) thread that a
specified amount of time has expired.

Dispatcher objects may be in either a signaled state or a nonsignaled state.
A signaled state indicates that an objett is available and a thread will not block
when acquiring the object. A nonsignaled state indicates that an object is not
available and a thread will block when attempting to acquire the object. We
illustrate the state transitions of a mutex lock dispatcher object in Figure 6.23.

A relationship exists between the state of a dispatcher object and the state
of a thread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting, and the thread is placed in a waiting queue

owner thread releases mutex lock

A

H
s

{ nonsignaled) signaied

thread acquires mutex lock

Figure 6.23 Muiex dispatcher obiect.

216

Chapter 6

for that object. When the state for the dispatcher object moves to signaled,
the kernel checks whether any threads are waiting on the object. If so, the
kernel moves one thread—or possibly more threads—from the waiting state
to the ready state, where they can resume executing. The number of threads the
kernel selects from the waiting queue depends on the type of dispatcher object
it is waiting on. The kernel will select only one thread from the waiting queue
for a mutex, since a mutex object may be “owned” by only a single thread. For
an event object, the kernel will select all threads that are waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. 1f a thread tries to acquire a mutex dispatcher object that is in a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the
front of the queue will be moved from the waiting state o the ready state and
will acquire the mutex lock.

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Win32 APl

6.8.3 Synchronization in Linux

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted-—even if a higher-priority
process becamne available to run. Now, however, the Linux kernel is fully
preemptive, so a task can be preempted when it is running in the kernel.

The Linux kernel provides spiniocks and semaphores (as well as reader—
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanisim is a spinlock, and the kernelis designed so
that the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing
the spinlock, it enables kernel preemption. This is summarized below:

sirig!e processor muttiple processors —i-
Disable kernel preemption. Acquire spin lock.
Enable kerriel preemption. Release spin lock.

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preeupt disable() and pre-
empt_enable () —for disabling and enabling kernel preemption. In addition,
however, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this, each task in the system has a thread-infe structure containing
a counter, preempt_count, to indicate the number of locks being held by the
task. When a lock is acquired, preempt .count is incremented. It is decremented
when a lock is released. It the value of preempt count for the task currently
running is greater than zero, it is not safe to preempt the kernel, as this task
currently hold~ 2 lock. If the count is zero, the kernel can safely be interrupted
{assuming there are no outstanding calls to oreempt disable()).

6.9

6.9 217

Spindocks—along with enabling and disabling kernel preemption—are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration. When a lock must be held for a longer period, semaphores
are appropriate for use.

6.8.4 Synchronization in Pthreads

The Pthreads AP! provides mutex locks, condition variables, and read -write
locks for thread synchronization. This APl is available for programmers and
is not part of any particular kernel. Mutex locks represent the fundamental
synchronization technique used with Pthreads. A mutex lock is used to protect
critical sections of code—that is, a thread acquires the lock before entering
a critical section and releases it upon exiting the critical section. Condition
variables in Pthreads behave much as described in Section 6.7. Read-write
locks behave similarly to the locking mechanism described in Section 6.6.2.
Many systems that implement Pthreads also provide semaphores, although
they are not part of the Pthreads standard and instead belong to the POSIX SEM
extension. Other extensions to the Pthreads APT include spinlocks, although not
all extensions are considered portable from one implementation to another. We
provide a programming project at the end of this chapter that uses Pthreads
mutex locks and semaphores.

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically. That is, if two critical sections are executed concurrently,
the result is equivalent to their sequential execution in some unknown order.
Although this property is useful in many application domains, in many cases
we would like to make sure that a critical section forms a single logical unit
of work that either is performed in its entirety or is not performed at all. An
example is funds transter, in which one account is debited and another is
credited. Clearly, it is essential for data consistency either that both the credit
and debit occur or that neither occur. -

Consistency of data, along with storage and retrieval of data, is a concern
often associated with database systems. Recently, there has been an upsurge of
interest in using database-systems techniques in operating systems. Operating

- systemns can be viewed as manipulators of data; as such, they can benefit from

the advanced techniques and models available from database research. For
instance, many of the ad hoc techniques used in operating systems to manage
tiles could be more flexible and powerful if more formal database methods
were used in their place. In Sections 6.9.2 to 6.9.4, we describe some of these
database techniques and explain how they can be used by operating svsterns.
First, however, we deal with the general issue of transaction atomicity. It is this
property that the database techniques are meant to address.

6.9.1 System Model

A collection of instructions {or operations) that performs a single logical
function is called a transaction. A major issue in processing transactions is the
preservation of atomicity despite the possibility of failures within the computer
system.

218

Chapter &

We can think of a transaction as a program unit that accesses and perhaps
updates various data items that reside on a disk within some files. From our
point of view, such a transaction is simply a sequence of read and write
operations terminated by either a commit operation or an abort operation.
A commit operation signifies that the transaction has terminated its execution
successfully, whereas an abort operation signifies that the transaction has
ended its normal execntion due to some logical error or a system failure.
If a terminated transaction has completed its execution successfully, it is
committed; otherwise, it is aborted.

Since an aborted transaction may already have modified the data that it
has accessed, the state of these data may not be the same as it would have
been if the transaction had executed atomically. So that atomicity is ensured,
an aborted transaction must have no effect on the state of the data that it has
already modified. Thus, the state of the data accessed by an aborted transaction
must be restored to what it was just before the transaction started executing. We
say that such a transaction has been rolled back. It is part of the responsibility
of the system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure. '

Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
memory. Access to volatile storage is extremely fast, both because of the
speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

Nonvolatile storage. Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disks and
magnetic tapes. Disks are more reliable than main memory but less reliable
than magnetic tapes. Bpth disks and tapes, however, are subject to failure,
which may result in loss of information. Currently, nonvolatile storage is
slower than volatile storage by several orders of magnitude, because disk
and tape devices are electromechanical and require physical motion to
access data.

Stable storage. Information residing in stable storage is wever lost (jever
should be taken with a grain of salt, since theoretically such absolutes
cannot be guaranteed). To implement an approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes and to update the information in a
controlled manner (Section 12.8).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile storage.
6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing all the modifications made by the transaction to the various data it
accesses. The most widely used method for achieving this form of recording

6.9 : 219

is write-ahead logging. Here, the system maintains, on stable storage, a data
structure called the log. Each log record describes a single operation nf a
transaction write and has the following fields:

Transaction name. The unique name of the transaction that performed the
write operation

Data item name. The unique name of the data item written
» Old value. The value of the data item prior to the write operation
New value. The value that the data item will have after the write

Other special log records exist to record significant events during transac-
tion processing, such as the start of a transaction and the commit or abort of a
transaction.

Before a transaction T; starts its execution, the record < T; starts: is
written to the log. During its execution, any write operation by T, is preceded
by the writing of the appropriate new record to the log. When T; commits, the
record < T; commits> is written to the log.

Because the information in the log is used in reconstructing the state of the
data items accessed by the various transactions, we cannot allow the actual
update to a data item to take place before the corresponding log record is
written out to stable storage. We therefore require that, prior to execution of a
write(X) operation, the log records corresponding to X be written onto stable
storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed,
both for the data themselves and for the log recording the changes. In cases
where the data are extremely important and fast failure recovery is necessary,
the price is worth the functionality.

Ising the log, the system can handle any failure that does not resuit in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

undo(T;), which restores the value of all data updated by transaction T} to
the old values

redo(T;), which sets the value of all data updated by transaction T; to the
new values

The set of data updated by T; and their respective old and new values can be
found in the log.

The unde and redo operations must be idempotent (that is, multiple
executions must have the same result as does one execution) to guarantee
correct behavior, even if a faiture occurs during the recovery process.

If a transaction T; aborts, then we can restore the state of the data that
it has updated by simply executing undo(T;). If a system failure occurs, we
restore the state of all updated data by consulting the log to determine which
transactions need to be redone and which need to be undone. This classification
of transactions is accomplished as follows: '

Transaction T; needs to be undone if the log contains the < T, starts>
record but does not contain the < T; commits> record.

220

Chapter 6

Transaction T; needs to be redone if the log contains both the < T; starts>
and the < T; commits> records.

6.9.3 Checkpoints

When a system failure occurs, we must consult the log to determine those
transactions that need to be redone and those that need to be undone. In
principle, we need to search the entire log to make these determinations. There
are two major drawbacks to this approach:

The searching process is time consuming.

Most of the transactions that, according to our algorithm, need to be
redone have already actually updated the data that the log says they
need to modify. Although redoing the data modifications will cause no
harm (due to idempotency), it will nevertheless cause recovery to take
longer.

To reduce these types of overhead, we introduce the concept of check-
points. During execution, the system maintains the write-ahead log. In addi-
tion, the system periodically performs checkpoints that require the following
sequence of actions to take place:

Output all log records currently residing in volatile storage (usually main
memory) onto stable storage.

Outpat all modified data residing in volatile storage to the stable storage.

Output a log record <checkpoint: onto stable storage.

The presence of a <checkpoint:» record in the log allows the system
to streamline its recovery procedure. Consider a transaction T; that committed
prior to the checkpoint. The < T; commits > record appears in the log before the
<checkpoint > record. Any modifications made by T; must have been written
to stable storage either prior to the checkpoint or as part of the checkpoint
itself. Thus, at recovery time, there is no need to perform a redo operation on
T:.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction T; that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record, and then finding the subsequent
< T; start> record. '

Once transaction T; has been identified, the rede and undo operations need
be applied only to transaction T; and all transactions T; that started executing
after transaction T;. We'll call these transactions set T. The remainder of the log
can thus be ignored. The recovery operations that are required are as follows:

For all transactions T in T such that the record < Ty commits> appears in
the log, execute redo(T;).

6.9 . s 221

For all transactions T, in T that have no < T; commits> record in the log,
execute undo{T}).

6.9.4 Concurrent Atomic Transactions

We have been considering an environment in which only one transaction can
be executing at a time. We now turn to the case where multiple transactions
are active simullaneous]y. Because each transaction is atomic, the concurrent
execution of transactions must be equivalent to the case where these trans-
actions are executed serially in some arbitrary order. This property, called
serializability, can be maintained by simply executing each transaction within
a critical section. That is, all transactions share a common semaphore niiex,
which is initialized to 1. When a transaction starts executing, its first action is to
execute walt(mufex). After the transaction either commits or aborts, it executes
signal(mufex).

Although this scheme ensures the atomicity of all concurrently executing
transactions, it is nevertheless too restrictive. As we shall see, in manv
cases we can allow transactions to overlap their execution while maintaining
serializability. A number of different concurrency-control algorithms ensure
serializability. These algorithms are described below:,

6.94.1 Serializability

Consider a system with two data items, A and B, that are both read and written
by two transactions, Ty and T;. Suppose that these transactions are executed
atomically in the order T;, followed by T,. This execution sequence, which is
called a schedule, is represented in Figure 6.24. In schedule 1 of Figure 6.24, the
sequence of instruction steps is in chronological order from top to bottom, with
instructions of Ty appearing in the left column and instructions of Ty appearing
in the right column.

A schedule in which each transaction is executed atomically is called
2 serial schedule. A serial schedule consists of a sequence of instructions
from various transactions wherein the instructions belonging to a particular
transaction appear together. Thus, for a set of » transactions, there exist 1!
different valid serial schedules. Each serial schedule is correct, because it is

L | n

read(A) |

write(A)

read(B)

write(B)
read({A}
write{A}
read(B)
write(B)

Figure 6.24 Schedule 1: A serial schedule in which Ty is foliowed by T5.

Chapter 6

L | T
read(A) .
write(A4) !
t read(A)
| write(A)
read(B) i
write(B) |
| read(B)
| write(B)

Figure 6.25 Schedule 2: A concurrent seriglizable schedule.

equivalent to the atomic execution of the various participating transactions in
some arbitrary order.

if we allow the two transactions to overlap their execution, then the resuit-
ing schedule is no longer serial. A nonserial schedule does not necessarily
imply an incorrect execution {that is, an execution that is not equivalent to one
represented by a serial schedule). To see that this is the case, we need to define
the notion of conflicting operations.

Consider a schedule 5 in which there are two consecutive operations ()
and O; of transactions T; and T,, respectively. We say that (; and O,* conflict if
they access the same data item and at least one of them is a write operation.
To illustrate the concept of conflicting operations, we consider the nonserial
schedule 2 of Figure 6.25. The write(A) operation of T, conflicts with the
read{A) operation of T;. However, the write{A} operation of Ty does not
conflict with the read(B) operation of T, because the two operations access
different data items.

Let O and O; be consecutive operations of a schedule 5. If O; and O, are
operations of different transactions and O; and Q; do not conflict, then we can
swap the order of (J, and (; to produce a new schedule 5. We expect S to be
equivalent to &', as all operations appear in the same order in both schedules,
except tor O and O, whosc order does not matter.

We can illustrate the swapping idea by considering again schedule 2 of
Figure 6.25. As the write(A) operation of T) does not conflict with the read(B)
operation of T, we can swap these operations to generate an equivalent
schedule. Regardless of the initial system state, both schedules produce
the same final systern state. Continuing with this procedure of swapping
nenconflicting operations, we get:

Swap the read(B) operation of T with the read(A) operation of T;.

wwap the write{B) operation of T; with the write(A) operation of T;.

Swap the write{B) operation of T with the read(A) operaticn of Ti.

The final result of these swaps is schedule 1 in Figure 6.24, which is a
scnal schedule. Thus, we have shown that schedule 2 is equivalent to a serial

schedule. This result implies that, regardless of the initial system state, schedule
2 will produce the same final state as will some serial schedule.

6.9 R 223

If a schedule S can be transformed into a serial schedule ' by a series of
swaps of nonconflicting operations, we say that a schedule § is conflict serial-
izable. Thus, schedule 2 is conflict serializable, because it can be transformed
into the serial schedule 1.

6.9.4.2 Locking Protocol

Une way to ensure serializability is to associate with each data item a lock and
to require that each transaction follow a locking protocol that governs how
locks are acquired and released. There are various modes in which a data item
can be locked. In this section, we restrict our attention to two modes:

Shared. If a transaction T, has obtained a shared-mode lock {denoted by
5) on data item (Q, then T; can read this item but cannot write Q.

Exclusive. If a transaction T, has obtained an exclusive-mode lock (denoted
by X) on data itern Q, then T; can both read and write Q.

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access data item (, transaction T; must first lock Q in the appropriate
mode. If is not currently locked, then the lock is granted, and T, can now
access it. However, if the data item Q is currently locked by some other
transaction, then T; may have to wait. More specifically, suppose that T, requests
an exclusive lock on Q. In this case, T; must wait until the lock on (2 is released.
If T, requests a shared lock on Q, then T, must wait if Q is locked in exclusive
mode. Otherwise, it can obtain the lock and access Q. Notice that this scherne
is quite similar to the readers~writers algorithm discussed in Section 6.6.2.

A transaction may unlock a data item that it locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.
Moreover, it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests in
two phases:

Growing phase. A transaction may obtain locks but may not release any
lock.

Shrinking phase. A transaction may release locks but may not obtain any
new locks.

Initially, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the shrinking
phase, and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
6.17). 1t does not, however, ensure freedom from deadlock. In addition, it
is possible that, for a given set of transactions, there are conflict-serializable
schedules that cannot be obtained by use of the two-phase locking protocol.
However, to improve performance over two-phase locking, we need either to

224

Chapter 6

have additional information about the transactions or to impose some structure
or ordering on the set of data.

6.9.4.3 Timestamp-Based Protocols

In the locking protocols described above, the order followed by pairs of
conflicting transactions is determined at execution time by the first lock that
both request and that involves incompatible modes. Another method for
determining the serializability order is to select an order in advance. The most
common method for doing so is to use a timestamp ordering scheme.

With each transaction T, in the system, we associate a unique fixed
timestamp, denoted by TS(T)). This timestamp is assigned by the system
before the transaction T, starts execution. If a transaction 1; has been assigned
timestamp TS(T}), and later a new transaction T; enters the system, then TS(T;)
< TS(T,). There are two simple methods for implementing this scheme:

Use the value of the system clock as the timestamp; that is, a transaction’s
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systemns or for processors that do not share a clock.

Use a logical counter as the timestamp; that is, a transaction’s timestamp
is equal to the value of the counter when the transaction enters the system.
The countet is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(T;) < TS(T,), then the system must ensure that the produced
schedule is equivalent to a serial schedule in which transaction T; appears
before transaction T,

To implement this scheme, we associate with each data item (Q two
timestamyp values:

W-timestamp((Q} denotes the largest timestamp of any transaction that
sucressfully executed write(Q).

R-timestamp({Q) denotes the largest timestamp of any transaction that
successfully executed read(Q).

These timestamps are updated whenever a new read((Q) or write(Q) instruc-
tion is executed.

The timestamp-ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates as
follows:

Suppose that transaction T, issues read((:

o If TS(T;} = W-timestamp(), then T; needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and T; is
rolled back.

If TS(T)) = W-timestamp{Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T:).

Suppuose that transaction T; issues write(Q):

6.10

6.10 225

T Ty
read(B) |
read(B)
write(B)
read{A)
read(A)
write(A)

Figure 6.26 Schedule 3: A schedule possible under the timestamp protocol.

o If TS(T;) < R-timestamp(Q), then the value of Q that T, is producing
was needed previously and T; assumed that this value would never be
produced. Hence, the write operation is rejected, and T, is rolled back.

o I TS(T;) < W-timestamp(Q), then T; is attempting to write an obsolete
value of (). Hence, this write operation is rejected, and T, is rolled back.

o Otherwise, the write operation is executed.

A transaction T; that is rolled back as a result of the issuing of either a read or
write operation is assigned a new timestamp and is restarted.

To illustrate this protocol, consider schedule 3 of Figure 6.26, which
includes transactions T, and T5. We assume that a transaction is assigned a
timestamp immediately before its first instruction. Thus, in schedule 3, TS(Tz)
< TS(T5), and the schedule is possible under the timestamp protocol.

This execution can also be produced by the two-phase locking protocol.
However, some schedules are possible under the two-phase locking protocol
but not under the timestamp protocol, and vice versa.

The timestamp protocol ensures conflict serializability. This capability
follows from the fact that conflicting operations are processed in timestamp
order. The protoco! also ensures freedom from deadlock, because no transaction
ever waits.

Given a collection of cooperating sequential processes that share data, mutual
exclusion must be provided. One solution is io ensure that a critical section of
code is in use by only one process or thread at a time. Different algorithms exist
for solving the critical-section problem, with the assumption that only storage
interlock is available.

The main disadvantage of these user-coded solutions is that they all require
busy waiting. Semaphores overcome this difficulty. Semaphores can be used
to solve various synchronization problems and can be implemented efficiently,
especially if hardware support for atomic operations is available.

Various synchronization problems (such as the bounded-buffer problem,
the readers—writers problem, and the dining-philosophers problem} are impor-
tant mainly because they are examples of a large class of concurrency-control
problems. These problems are used to test nearly cvery newly proposed
synchronization scheme.

226

Chapter 6

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these prob-
lems. Monitors provide the synchronization mechanism for sharing abstract
data types. A condition variable provides a method by which a monitor
procedure can block its execution until it is signaled to continue.

Operating systems also provide support for synchronization. For example,
Solaris, Windows XP, and Linux provide mechanisms such as semaphores,
mutexes, spinlocks, and condition variables to control access to shared data.
The Pthreads AP1 provides support for mutexes and condition variables.

A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it are executed to completion, or
none are performed. To ensure atomicity despite system failure, we can use a
write-ahead log. All updates are recorded on the log, which is kept in stable
storage. If a system crash occurs, the information in the log is used in restoring
the state of the updated data items, which is accomplished by use of the undo
and redo operations. To reduce the overhead in searching the log after a system
failure has occurred, we can use a checkpoint scheme.

To ensure serializability when the execution of several transactions over-
laps, we must use a concurrency-control scheme. Various concurrency-control
schemes ensure serializability by delaying an operation or aborting the trans-
action that issued the operation. The most common ones are locking protocols
and timestamyp ordering schemes.

6.1 The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, P and
Py, share the following variables:

boolean flagl2]; /* initially false */
int turnm;

The structure of process P; (i == 0 or 1) is shown in Figure 6.27; the other
process is P; (j == 1 or 0). Prove that the algorithm satisfies all three
requirements for the critical-section problem.

6.2 [xplain why spinlocks are not appropriate for single-processor svstems
vet are often used in multiprocessor systems.

6.3 Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the syn-
chronization primitives are to be used in user-level programs.

6.4 Describe how the Swap() instruction can be used to provide muiual
exclusion that satisfies the bounded-waiting requirement.

6.5 Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection
is released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

6.6

6.7

6.8

6.9

227

do {
flag[i] - TRUE;

while (flag{il) {

if (turn ==) {
flaglil = false:
while (turn ==)

; // do nothing
flag[i] = TRUE;

/7 critical section
turn = j;
flag[i] = VFRLSE;

// remainder secticn
}while (TRUE);

Figure 6.27 The structure of process F, in Dekker’s algorithm.

The first known correct software selution to the critical-section problem
for # processes with a lower bound on waiting of n - 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enun pstate {idle, want.in, in_cs};
pstate flag[nl;
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process F; is shown in
Figure 6.28. Prove that the algorithm satisfies all three requirements for
the critical-section problem,

Show how to implement the wait () and signal{) semaphore opera-
tions in multiprocessor environments using the TestAndSet () instruc-
tion. The solution should exhibit minimal busy waiting.

The Sleeping-Barber Problem. A barbershop consists of a waiting room
with # chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

228 Chapter 6
do {
while ({TRUE} {
flagfi] = want.in;
j = turn;
while (j 1= i) {
if (flagljl] 1= idle) {
j = turn;
else
J = {3 + 1) % n;
}
flag{i] = in.cs;
3= 0
wiile ((3 < n) && (3 == 1 || flagl[jl != in.cs)
J++;
1f { (3 »= n} && (turn == i || flaglturn] == idle})
break;
}
// critical section
j = (turn + 1) % n;
while (flagl[j] == idle)
3= (3 - 1} % n;
turn = j;
flag[i] = idle;

// remainder section

}while (TRUE ;

Figure .28 The structure of process P in Eisenberg and McGuire's algorithm.

6.10

6.11

6.12

The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.9 mainly suitable for small portions.

a. Explain why this is true. _

b. Design a new scheme that is suitable for larger portions.
How does the signal () operation associated with monitors differ from
the corresponding operation defined for scmaphores?

Suppose the signal () statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified.

6.13

6.14

6.15

6.16

6.17
6.18

6.19

229

A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: The sum of all unique
numbers associated with all the processes currently accessing the file
must be less than s, Write a monitor to coordinate access to the file,

When asignal is performed on a condition inside a monitor, the signaling
process can either continue its execution or transter control to the process
that is signaled. How would the solution to the preceding exercise differ
with the two ditferent ways in which signaling can be performed?

Write a monitor that implements an alarm clock that enables a calling
program to delay itself for a specified number of time units (ficks).
You may assume the existence of a real hardware clock that invokes
a procedure tick in vour monitor at regular intervals,

Why do Selaris, Linux, and Windows 2000 use spinlocks as a syn-
chronization mechanism only on multiprocessor systems and not on
single-precessor systems?

Show that the two-phase Jocking protocol ensures conflict serializabilitv.

What are the implications of assigning a new timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled-back transaction but that have timestamps smaller
than the new timestamyp of the rolled-back transaction?

The decrease_count(} function in the previous exercise currently
returns O if sufficient resources are available and -1 otherwise. This leads
to awkward programming for a process that wishes obtain a number of
TresOuUrces:

while (decrease_count{(count) == -1)

Rewrite the resource-manager code segment using a monitor and
condition variables so that the decrease count () function suspends
the process until sufficient resources are available. This will allow a
process to invoke decrease_count () by simply calling

decrease_count{count);

The process will only return from this function call when sufficient
resources are available.

In Section 6.6.1, we present a semaphore-based sotution to the producer-
consumer problem using a bounded buffer. In this project, we will design a
programiming solution to the bounded-buffer problem using the producer and
consumer processes shown in Figures 6.12 and 6.13. The solution presented in
Section 6.6.1 uses three semaphores: empty and full, which count the number

230

Chapter 6

of empty and full slots in the buffer, and mutex, which is a binary (or mutual
exclusion) semaphore that protects the actual insertion or removat of items
in the buffer.-For this project, standard counting semaphores will be used for
empty and full, and, rather than a binary semaphore, a mutex lock will be
used to represent mutex. The producer and consumer-—running as separate
threads—will move items to and from a buffer that is synchronized with these
empty, full, and mutex structures. You can solve this problem using either
Pthreads or the Win32 APL

The Buffer

Internally, the buffer will consist of a fixed-size array of type buffer. item
{which will be defined using a typefdef). The array of buffer item objects
will be manipulated as a circular queue. The definition of buffer item, along
with the size of the buffer, can be stored in a header file such as the following:

/* buffer.h */
typedef int buffer_item,;
#define BUFFER_GIZE 5

The buffer will be manipulated with two functions, insert_item() and
remove_item(), which are called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears as:

#include <buffer.h>

/* the buffer =/
buffer item buffer[BUFFER_SIZE];

int insert item(buffer_item item) {
/* insert item into buffer
return 0 if successful, otherwise
return -1 indicating an error condition */

}

int remove item({buffer_item *item) {
/* remove an object from buffer
placing it in item
return 0 if successful, otherwise
return -1 indicating an error conditiom */

}

The insert_item() and remove.item() functions will synchronize the pro-
ducer and consumer using the algorithms outlined in Figures 6.12 and 6.13.
The buffer will also require an initialization function that initializes the mutual-
exclusion object mutex along with the empty and full semaphores.

The main() function will initialize the buffer and create the separate
producer and consumer threads. Once it has created the producer and
consumer threads, the main() function will sleep for a period of time and,

231

#include <buffer.h:

int main(int arge, char *argv(]) {
/* 1. Get command line arguments argv[1], argv(2], argv[?] */

/% 2. Initialize buffer =/

/% 3. Create producer thread{(g) =/
/* 4. Create consumer thread(s) */
/* 5. Sleep */

/* 6, Exit */

Figure 6.29 A skeleton program

upon awakening, will terminate the application. The main () function will be
passed three parameters on the command fine:

How long to sleep before terminating
The number of producer threads

The number of consumer threads

A skeleton for this function appears as shown in Figure 6.29:
Producer and Consumer Threads

The producer thread will alternate between sleeping for a random period of
lime and inserting a random integer info the buffer, Random numbers will
be produced using the rand() function, which produces random integers
between (t and RAND MAX. The consumer will also sleep for a random period
of time and, upon awakening, will attempt to remove an item from the buffer.
An outline of the producer and consumer threads appears as shown in Figure
6.30. In the following sections, we first cover details specific to Pthreads and
then describe details of the Win32 AT1.

Pthreads Thread Creation

Creating threads using the Pthreads APl is discussed in Chapter 4. Please refer
to that chapter for specific instructions regarding creation of the producer and
consumer using Pthreads.

Pthreads Mutex Locks

In Figure 6.31 we show a code sample that illustrates how mutex locks available
in the Pthread API can he used to protect a critical section.

Pthreads uses the pthread mutex.t data type for mutex locks. A
mutex is created with the pthread mutex init(&mutex,NULL) function,
with the first parameter being a pointer to the mutex. By passing NULL
as a second parameter, we initialize the mutex to its default atiributes.

232

Chapter 6

#include <stdlib.h> /#* required for rand{) */
#include <buffer.h>

void =xproducer{void #*param) {
buffer item rand;

while (TRUE) { -
/% sleep for a random period of time */
sleep(...);
/* generate a random number */
rand = rand();
printf ("producer produced %f\n",rand);
if (insert.item{rand))
fprintf ("report erreor ccndition");

}

void *consumer(void *param) {
buffer_item rand;

while (TRUE} {
/* sleep for a random period of time */
sleep(...);
if (remove item(&rand))
fprintf ("report error condition");
else
printf("consumer consumed %f\n",rand);

Figure 6.30 An outline of the producer and consumer threads.

The mutex is acquired and released with the pthread mutex.lock() and
pthread.mutex.unlock() functions. If the mutex lock is unavailable when
pthread mutex_lock() is invoked, the calling thread is blocked until the
owner invokes pthread mutex_unlock{). All mutex functions return a value
of 0 with correct operation; if an error occurs, these functions return a nonzero
error code.

Pthreads Semaphores
Pthreads provides two types of semaphores—named and unnamed. For this
project, we use unnamed semaphores. The code below illustrates how a

semaphore is created:

#include <semaphore.h:
sem_t sem;

/* Create the semaphore and initialize it to 5 */
sem init(&sem, 0, 5);

233

#include <pthread.h>
pthread mutex t mutex;

/* c¢reate the mutex lock */
pthread mutex_init (&mutex,NULL);

/* acquire the mutex lock */
pthread mutex_lock(&mutex) ;

J*¥% critical section **x/

/* release the mutex lock =/
pthread mutex unlock(&mutex};

Figure 6.31 fff

Thesem_init () createsand initializes a semaphore. This function is passed
three parameters:

A pointer to the semaphare
A flag indicating the level of sharing

The semaphore’s initial value

In this example, by passing the flag 0, we are indicating that this semaphore
can only be shared by threads belonging to the same process that created
the semaphore. A nonzero value would allow other processes to access the
semaphore as well. In this example, we initialize the semaphore to the value 5.

In Section 6.5, we described the classical wait (3 and signal () semaphore
operations. Pthreads names the wait{) and signal () operations sem wait ()
and sem _post (), respectively. The code example shown in Figure 6.32 creates
a binary semaphore mutex with an initial value of 1 and illustrates its use in
protecting a critical section.

Win32

Details concerning thread creation using the Win32 APl are available in Chapter
4. Please refer to that chapter for specific instructions.

Win32 Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section 6.8.2. The
following illustrates how to create a mutex lock using the CreateMutex()
function:

#include <windows.h>

HANDLE Mutex;
Mutex = CreateMutex (NULL, FALSE, NULL);

234

Chapter 6

#include <semaphore.h>
sem.t sem mutex;

/* create the semaphore */
sem_init (§mutex, 0, 1);

/* acquire the- gsemaphore */
sem_walt (&mutex);

/*** critical section ***/

/* release the semaphore */
sem.post (kmutex) ;

Figure 6.32 fif

The first parameter refers to a security attribute for the mutex lock. By setting
this attribute to NULL, we are disallowing any children of the process creating
this mutex lock to inherit the handle of the mutex. The second parameter
indicates whether the creator of the mutex is the initial owner of the mutex
lock. Passing a value of FALSE indicates that the thread creating the mutex is
not the initial owner; we shall soon see how mutex locks are acquired. The third
parameter allows naming of the mutex. However, because we provide a value
of NULL, we do not name the mutex. If successful, CreateMutex () returns a
HANDLE to the mutex lock; otherwise, it returns NULL.

In Section 6.8.2, we identified dispatcher objects as being either signaled
or noviignaled. A signaled object is available for ownership; once a dispatcher
object {such as a mutex lock) is acquired, it moves to the nonsignaled state.
When the object is released, it returns to signaled.

Mutex locks are acquired by invoking the WaitForSingleObject () func-
tion, passing the function the HANDLE to the lock and a flag indicating how long
to waiL. The following code demonstrates how the mutex lock created above
can be acquired:

WaitForSingleObject (Mutex, INFINITE);

The parameter value INFINTTE indicates that we will wait an infinite amount
of time for the lock to become available. Other values could be used that would
allow the calling thread to time out if the lock did not become avaiiable within
a specified time. If the lock is in a signaled state, WaitForSingleObject ()
returns immediately, and the lock becomes nonsignaled. A lock is released
{moves to the nonsignaled state) by invoking ReleaseMutex (), such as:

ReleaseMutex (Mutex);

Win32 Semaphores

Semaphores in the Win32 A1 are also dispatcher objects and thus use the same
signaling mechanism as mutex locks. Semaphores are created as follows:

235

#include <windows.h>

HANDLE Sem;
Sem = CreateSemaphore(NULL, 1, 5, NULL);

The first and last parameters identify a sccurity attribute and a name for
the semaphore, similar to what was described for mutex ocks. The second
and third parameters indicate the initial value and maximum value of the
semaphore. In this instance, the initial value of the semaphore is 1, and its
maximum value is 5. If successful, CreateSemaphore () returns a HANDLE to
the mutex lock; otherwise, it returns NULL.

Semaphores are acquired with the same WaitForSingleObject (} func-
tion as mutex locks. We acquire the semaphore Sem created in this example by
using the statement:

WaitForSingleObject (Semaphore, INFINITE);

If the value of the semaphore is > U, the semaphore is in the signaled state
and thus is acquired by the calting thread. Otherwise, the calling thread blocks
indefinitely —as we are specifying INFINITE—until the semaphore becomes
signaled.

The equivalent of the signal () operation on Win32 semaphores is the
ReleaseSemaphore() function. This function is passed three parameters: (1}
the HANDLE of the semaphore, (2) the amount by which to increase the value
of the semaphore, and (3) a pointer to the previous value of the semaphore. Wr
can increase Sem by 1 using the following statement:

ReleaseSemaphore(Sem, 1, NULL);

Both ReleaseSemaphore() and ReleaseMutex () return 0 if successful ari
nonzero otherwise.

i T Y
MR ITNES BEATIW EL

The mutual-exclusion problem was first discussed in a classic paper by Dijkst a
{1965a). Dekker’s algorithm (Exercise 6.1)—the first correct software soluti-n
to the two-process mutual-exciusion problem —was developed by the Dutch
mathematician T. Dekker. This algorithm also was discussed by Dijkstea
[1965a]. A simpler solution to the two-process mutual-exclusion problem has
since been presented by Peterson [1981] (Figure 6.4).

Dijkstra [1965b] presented the first solution to the mutual-exclusion prob-
lem for n processes. This solution, however does not have an upper bound
on the amount of time a process must wait before it is allowed to enter the
critical section. Knuth [1966] presented the first algorithm with a bound; his
bound was 2" turns. A refinement of Knuth's algorithm by deBruijn [1967]
reduced the waiting time to 12 turns, after which Eisenberg and McGuire
[1972] (Exercise 6.4) succeeded in reducing the time to the lower bound of n—1
turns. Another algorithm that also requires n—1 turns but is easier to program
and to understand, is the bakery algorithm, which was developed by Lamport
[1974]. Burns {1978] developed the hardware-solution algorithm that satisfies
the bounded-waiting requirement.

236

Chapter 6

General discussions concerning the mutual-exclusion problem were
offered by Lamport [1986] and Lamport [1991]. A collection of algorithms for
mutual exclusion was given by Raynal {1986},

The semaphore concept was suggested by Dijkstra [1965a], Patil [1971]
examined the question of whether semaphores can solve all possible syn-
chronization problems. Parnas [1975] discussed some of the flaws in Patil’s
arguments. Kosaraju |1973] tollowed up on Patil’s work to produce a problem
that cannot be solved by wait () and signal() operations. Lipton [1974]
discussed the limitations of various synchronization primitives.

The classic process-coordination problems that we have described are
paradigms for a large class of concurrency-control problems. The bounded-
buffer problem, the dining-philosophers problem, and the sleeping-barber
problem (Exercise 6.8) were suggested by Dijkstra [1965a] and Dijkstra [1971].
The cigarette-smokers problem (Exercise 6.8) was developed by Patil [1971].
The readers—writers problem was suggested by Courtois et al. [1971]. The
issue of concurrent reading and writing was discussed by Lamport [1977].
The problem of synchronization of independent processes was discussed by
Lamport [1976].

The critical-region concept was suggested by Hoare [1972] and by Brinch-
Hansen [1972]. The monitor concept was developed by Brinch-Hansen [1973].
A complete description of the monitor was given by Hoare [1974]. Kessels
[1977] proposed an extension to the monitor to allow automatic signaling.
Experience obtained from the use of monitors in concurrent programs was
discussed in Lampson and Redell [1979]. General discussions concerning
concurrent programming were offered by Ben-Ari [1990] and Birrell [1989].

Optimizing the performance of locking primitives has been discussed in
many works, such as Lamport [1987], Mellor-Crummey and Scott [1991], and
Anderson [1990]. The use of shared objects that do not require the use of critical
sections was discussed in Hetlihy [1993], Bershad [1993], and Kopetz and
Reisinger [1993]. Novel hardware instructions and their utility in implementing
synchronization primitives have been described in works such as Culler et al.
[1998], Goodman et al. [1989], Barnes [1993], and Herlihy and Moss {1993}

Some details of the locking mechanisms used in Solaris were presented
in Mauro and McDougall {2001]. Note that the locking mechanisms used by
the kernel are implemented for user-level threads as well, so the same types
of locks are available inside and outside the kernel. Details of Windows 2000

- synchronization can be found in Solomoen and Russinovich [2000].

The write-ahead log scheme was first introduced in System R by Gray
et al. [1981]. The concept of setializability was formulated by Eswaran et al.
[1976] in connection with their work on concurrency control for System R.
The two-phase Idcking protocol was introduced by Eswaran et al. [1976]. The
timestamp-based concurrency-control scheme was provided by Reed [1983].
Anexposition of various timestamp-based concurrencv-control algorithms was
presented by Bernstein and Goodman [1980].

